References
- Wolf, E. E., and Alfani, F., "Catalysts Deactivation by Coking," Catal. Rev. Sci. Eng., 24(3), 329-371 (1982). https://doi.org/10.1080/03602458208079657
- Bhatia, S., Beltramini, J., and Do, D. D., "Deactivation of Zeolite Catalysts," Catal. Rev. Sci. Eng., 31(4), 431-480 (1989). https://doi.org/10.1080/01614948909349937
- Bauer, F., and Karge, H. G., "Characterization of Coke on Zeolites," Mol. Sieves, 5, 249-364 (2007).
- Weckhuysen, B. M., (Ed), In-situ Spectroscopy of Catalysts, American Scientific Publishers, Stevenson Ranch, 2004.
- Weckhuysen, B. M., "Chemical Imaging of Spatial Heterogeneities in Catalytic Solids at Different Length and Time Scales," Angew. Chem. Int. Ed., 48, 4910-4943 (2009). https://doi.org/10.1002/anie.200900339
- Nishi, K., Komai, S.-I., Inagaki, K., Satsuma, A., and Hattori, T., "Structure and Catalytic Properties of Ga-MFI in Propane Aromatization," Appl. Catal. A: Gen., 223(1-2), 187-193 (2002). https://doi.org/10.1016/S0926-860X(01)00759-1
- Changlin, Lubango, L. M., and Scurrell, M. S., "Light Alkanes Aromatization to BTX over Zn-ZSM-5 Catalysts: Enhancements in BTX Selectivity by Means of a Second Transition Metal Ion," Appl. Catal. A: Gen., 235(1-2), 265-272 (2002). https://doi.org/10.1016/S0926-860X(02)00271-5
- Choudhary, V. R., Banerjee, S., and Panjala, D., "Product Distribution in the Aromatization of Dilute Ethene over H-GaAlMFI Zeolite: Effect of Space Velocity," Micropor. Mesopor. Mater., 51(3), 203-210 (2002). https://doi.org/10.1016/S1387-1811(01)00483-8
- Stavitski, E., Kox, M. H. F., and Weckhuysen, B. M., "Revealing Shape Selectivity and Catalytic Activity Trends within the Pores of H-ZSM-5 Crystals by Time- and Space-resolved Optical and Fluorescence Microspectroscopy," Chem. Eur. J., 13, 7057-7065 (2007). https://doi.org/10.1002/chem.200700568
- Mores, D., Stavitski, E., Kox, M. H. F., Kornatowski, J., Olsbye, U., and Weckhuysen, B. M., "Space- and Time-Resolved Insitu Spectroscopy on the Coke Formation in Molecular Sieves: Methanol-to-Olefin Conversion over H-ZSM-5 and H-SAPO-34," Chem. Eur. J., 14, 11320-11327 (2008). https://doi.org/10.1002/chem.200801293
- Chung, Y.-M., Mores, D., and Weckhuysen, B. M., "Spatial and Temporal Mapping of Coke Formation during Paraffin and Olefin Aromatization in Individual H-ZSM-5 Crystals," Appl. Catal. A: Gen., 404, 12-20 (2011). https://doi.org/10.1016/j.apcata.2011.06.030
- Viswanadham, N., Pradhan, A. R., Ray, N., Vishnoi, S. C., Shanker, U., and Rao, T. S. R. P., "Reaction Pathways for the Aromatization of Paraffins in the Presence of H-ZSM-5 and Zn/H-ZSM-5," Appl. Catal. A: Gen., 137(2), 225-233 (1996). https://doi.org/10.1016/0926-860X(95)00287-1
- Bartholomew, C. H., "Mechanisms of Catalyst Deactivation," Appl. Catal. A: Gen., 212(1-2) 17-60 (2001). https://doi.org/10.1016/S0926-860X(00)00843-7
- Palumbo, L., Bonino, F., Beato, P., Bjørgen, M., Zecchina, A., and Bordiga, S., "Conversion of Methanol to Hydrocarbons: Spectroscopic Characterization of Carbonaceous Species Formed over H-ZSM-5," J. Phys. Chem. C, 112, 9710-9716 (2008). https://doi.org/10.1021/jp800762v
- Nagamori, Y., and Kawase, M., "Converting Light Hydrocarbons Containing Olefins to Aromatics (Alpha Process), Micropor. Mesopor. Mater., 21(4-6), 439-445 (1998). https://doi.org/10.1016/S1387-1811(98)00035-3
- Olsbye, U., Bjorgen, M., Svelle, S., Lillerud, K. P., and Kolboe, S., "Mechanistic Insight into the Methanol-to-hydrocarbons Reaction," Catal. Today, 106(1-4), 108-111 (2005). https://doi.org/10.1016/j.cattod.2005.07.135