DOI QR코드

DOI QR Code

Synthesis of Trimetallic (PtRu-Sn/VC, PtRu-Ni/VC) Catalysts by Radiation Induced Reduction for Direct Methanol Fuel Cell (DMFC)

방사선환원법을 이용한 직접메탄올연료전지용(DMFC) 삼성분계촉매(PtRu-Sn/VC, PtRu-Ni/VC)의 합성

  • Kim, Sang Kyum (Graduate School of Green Energy Technology, Chungnam National University) ;
  • Park, Ji Yun (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Hwang, Sun Choel (Graduate School of Green Energy Technology, Chungnam National University) ;
  • Lee, Do Kyun (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Lee, Sang Heon (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Rhee, Young Woo (Graduate School of Green Energy Technology, Chungnam National University) ;
  • Han, Moon Hee (Graduate School of Green Energy Technology, Chungnam National University)
  • 김상겸 (충남대학교 녹색에너지기술전문대학원) ;
  • 박지윤 (충남대학교 바이오응용화학과) ;
  • 황순철 (충남대학교 녹색에너지기술전문대학원) ;
  • 이도균 (충남대학교 바이오응용화학과) ;
  • 이상헌 (충남대학교 바이오응용화학과) ;
  • 이영우 (충남대학교 녹색에너지기술전문대학원) ;
  • 한문희 (충남대학교 녹색에너지기술전문대학원)
  • Received : 2013.06.04
  • Accepted : 2013.06.28
  • Published : 2013.09.30

Abstract

Nano-sized PtRu-Ni/VC and PtRu-Sn/VC electrocatalysts were synthesized by a one-step radiation-induced reduction (RIR) (30 kGy) process using distilled water as the solvent and Vulcan XC-72 as the supporting material. The obtained electrocatalysts were characterized by transmission electron microscopy (TEM), scanning electron microscope energy dispersive spectroscopic (SEM-EDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), respectively. The catalytic efficiency of electrocatalysts was examined for oxygen reduction, MeOH oxidation and CO stripping decreased in the following order, Hydrogen stripping : PtRu-Sn/VC > PtRu-Ni/VC > PtRu/VC$^{(R)}$ (E-TEK). MeOH oxidation : PtRu-Sn/VC > PtRu-Ni/VC > PtRu/ VC$^{(R)}$ (E-TEK). Unit cell performance : PtRu-Sn/VC > PtRu-Ni/VC > PtRu/VC$^{(R)}$ (E-TEK) catalysts.

방사선환원법을 통해 탄소지지체(Vulcan XC-72$^{(R)}$)를 기반으로 한 나노사이즈의 PtRu-Ni/VC와 PtRu-Sn/VC를 합성하였다. 합성된 촉매는 투과전자현미경(transmission electron microscopy, TEM), 주사전자현미경-에너지 분산형 분석기(scanning electron microscopy-energy dispersive spectroscopy, SEM-EDS), X선 광전자 분광기(X-ray photoelectron spectroscopy, XPS), X선 회절(X-ray diffraction, XRD)을 통해 촉매의 표면과 구조 및 성분에 대해 특성평가 되어졌으며, 촉매 전기화학적 효율 및 안정성 대한 평가를 위하여 산소 환원 반응, 메탄올 산화반응과 CO 흡착 효율을 E-TEK사에서 상용촉매로 판매되는 PtRu/VC$^{(R)}$ (60 wt% PtRu)와 비교하였으며, 이에 대한 요약은 다음과 같다. 수소 흡 탈착 반응 : PtRu-Sn/VC > PtRu-Ni/VC > PtRu/VC$^{(R)}$ (E-TEK). 메탄올산화반응 : PtRu-Sn/VC > PtRu-Ni/VC > PtRu/VC$^{(R)}$ (E-TEK). 단위셀 효율 : PtRu-Sn/VC > PtRu-Ni/VC > PtRu/VC$^{(R)}$ (E-TEK).

Keywords

References

  1. IEA, "World Energy Outlook," International Energy Agency, (2011).
  2. Greene, D. L., Hopson, J. L., and Li, J., "Have We Run Out of Oil Yet? Oil Peaking Analysis from an Optimist's Perspective," Energy Policy, 34(5), 515-531 (2006). https://doi.org/10.1016/j.enpol.2005.11.025
  3. Shipley, A. M., and Elliott, R. N., "Stationary Fuel Cells: Future Promise, Current Hype," American Council for a Energy-efficient Economy, Report No. IE041, 2004.
  4. Hamnett., A., "Mechanism and Electrocatalysis in the Direct Methanol Fuel Cell," Catal. Today, 38(4), 445-457 (1997). https://doi.org/10.1016/S0920-5861(97)00054-0
  5. Adamsona, K., A., and Pearson, P., "Hydrogen and Methanol: a Comparison of Safety, Economics, Efficiencies and Emissions," J. Power Source, 86(1-2), 548-555 (2000). https://doi.org/10.1016/S0378-7753(99)00404-8
  6. Wanga, Y., Chen, K. S., Mishler, J., Cho, S. C., and Adroher, X. C., "A Review of Polymer Electrolyte Membrane Fuel Cells: Technology, Applications, and Needs on Fundamental Research," Appl. Energy., 88, 981-1007 (2011). https://doi.org/10.1016/j.apenergy.2010.09.030
  7. Kamarudin, S. K., and Achmad, F., and Daud, W. R. W., "Over-View on the Application of Direct Methanol Fuel Cell (DMFC) for Portable Electronic Devices" Int. J. Hyd. E., 34(16), 6902-6916 (2009). https://doi.org/10.1016/j.ijhydene.2009.06.013
  8. Yuan, Z., Zhang, Y., Fu, W., Li, Z., and Liu, X., "Investigation of a Small-volume Direct Methanol Fuel Cell Stack for Portable Applications," Energy, 51(1), 462-467 (2013). https://doi.org/10.1016/j.energy.2012.12.033
  9. Wee, J. H., "Which Type of Fuel Cell is More Competitive for Portable Application: Direct Methanol Fuel Cells or Direct Borohydride Fuel Cells?," J. Power Source, 161(1), 1-10 (2006). https://doi.org/10.1016/j.jpowsour.2006.07.032
  10. Wang, W., Wang, R., Wang, H., Ji, S., Key, J., Li, X., and Lei, Z., "An Advantageous Method for Methanol Oxidation: Design and Fabrication of a Nanoporous PtRuNi Trimetallic Electrocatalyst," J. Power Source, 196(22), 9346-9351 (2011). https://doi.org/10.1016/j.jpowsour.2011.06.101
  11. Zhang, X., Zhang, F., and Chan, K. Y., "Preparation of Pt-Ru-Co Trimetallic Nanoparticles and Their Electrocatalytic Properties," Catal. Commun., 5(12), 749-753 (2004). https://doi.org/10.1016/j.catcom.2004.09.010
  12. Liu, C. W., Chang, Y. W., Wei, Y. C., and Wang, K. W., "The Effect of Oxygen Containing Species on the Catalytic Activity of Ethanol Oxidation for PtRuSn/C Catalysts," Elec. Acta., 56(5), 2574-2581 (2011). https://doi.org/10.1016/j.electacta.2010.11.013
  13. Yang, X. L., Allen, R. G., Scott, K., Christenson, P., and Roy, S., "A Comparative Study of PtRu and PtRuSn Thermally Formed on Titanium Mesh for Methanol Electro-oxidation," J. Power Source, 137(2), 257-263 (2004). https://doi.org/10.1016/j.jpowsour.2004.06.028
  14. Poh, C. K., Tian, Z., Gao, J., Liu, Z., Lin, J., Feng, Y. P., and Fabing, S., "Nanostructured Trimetallic Pt/FeRuC, Pt/NiRuC, and Pt/CoRuC Catalysts for Methanol Electrooxidation," J. Mater. Chem., 22, 13643-13652 (2012). https://doi.org/10.1039/c2jm31956j
  15. Lee, S. H., Kim, D. J., and Yoon, Y. S., "Electrochemical Characterization of Hydrothermally Synthesized Pt-Ru-Ni-P Catalyst for Direct Methanol Fuel Cell," Jpn. J. Appl. Phys., 52, 35001-35006 (2013). https://doi.org/10.7567/JJAP.52.035001
  16. Oh, S. D., Kim, M. R., Choi, S. H., Chun, J. H., Lee, K. P., Gopalan, A., Hwang, C. G., Kim, S. H., and Oh, J. H., "Radiolytic Synthesis of Pd-M (M = Ag, Au, Cu, Ni and Pt) Alloy Nanoparticles and Their Use in Reduction of 4-nitrophenol," J. Ind. Eng. Chem., 14, 687-692 (2008). https://doi.org/10.1016/j.jiec.2008.04.008
  17. Yang, D. S., Sim, K. S., Kwen, H. D., and Choi, S. H., "Onestep Preparation of Pt-M@FP-MWNT Catalysts (M = Ru, Ni, Co, Sn, and Au) by g-Ray Irradiation and Their Catalytic Efficiency for CO and MeOH" J. Ind. Eng. Chem., 18(1), 538-545 (2012). https://doi.org/10.1016/j.jiec.2011.11.059
  18. Kim, S. K., Kwen, H. D., and Choi, S. H., "Radiation-induced Synthesis of Vinyl Copolymer Based Nanocomposites Filled with Reactive Organic Montmorillonite Clay" Radiat. Phys. Chem.., 81, 519-523 (2012). https://doi.org/10.1016/j.radphyschem.2012.01.027
  19. Sim, K. S., Kwen, H. D., and Choi, S. H., "Electrocatalytic Activity for CO, MeOH, and EtOH Oxidation on the Surface of Pt-Ru Nanoparticles Supported by Metal Oxide," JNM, 2011, 1-8 (2011).
  20. Parsons, R., and Vandernoot, T., "The Oxidation of Small Organic Molecules. A Survey of Recent Fuel Cell Related Research," J. Electroanal. Chem., 257(1-2), 9-45 (1988). https://doi.org/10.1016/0022-0728(88)87028-1
  21. Xu, W. L., Lu, T. H., Liu, C. P., and Xing, W., "Nanostructured PtRu/C as Anode Catalysts Prepared in a Pseudomicroemulsion with Ionic Surfactant for Direct Methanol Fuel Cell," J. Phys. Chem. B., 109, 14325-14330 (2005). https://doi.org/10.1021/jp051443y
  22. Farah, D., Brian, M. L., and Raymond, E. S., "Oxidative Transformation of Intermetallic Nanoparticles: An Alternative Pathway to Metal/Oxide Nanocomposites, Textured Ceramics, and Nanocrystalline Multimetal Oxides," Chem. Mater., 19(18), 4545-4550 (2007). https://doi.org/10.1021/cm071147t
  23. Wang, W., Wang, R., Wang, H., Ji, S., Key, J., Li, X., Lei, Z., "An Advantageous Method for Methanol Oxidation: Design and Fabrication of a Nanoporous PtRuNi Trimetallic Electrocatalyst," J. Power Source, 196(22), 9346-9351 (2004).
  24. Han, D. M., Guo, Z. P., Zhao, Z. W., Zeng, R., Meng, Y. Z., Shu, D., and Liu, H. K., "Polyoxometallate-stabilized Pt-Ru Catalysts on Multiwalled Carbon Nanotubes: Influence of Preparation Conditions on the Performance of Direct Methanol Fuel Cells," J. Power Source, 184(2), 361-369 (2008). https://doi.org/10.1016/j.jpowsour.2008.03.051
  25. Jeyabharathi, C., Mathiyarasu, J., and Phani, K. L. N., "Methanol Tolerant Oxygen-reduction Activity of Carbon Supported Platinum-bismuth Bimetallic Nanoparticles," J. Appl. Electrochem., 39(1), 45-53 (2009). https://doi.org/10.1007/s10800-008-9638-8
  26. Prabhuram, J., Zhao, T. S., Wong, C. W., and Guo, J. W., "Synthesis and Physical/electrochemical Characterization of Pt/C Nanocatalyst for Polymer Electrolyte Fuel Cells," J. Power Source, 134, 1-6 (2004). https://doi.org/10.1016/j.jpowsour.2004.02.021
  27. Han, D. M., Guo, Z. P., Zhao, Z. W., Zeng, R., Meng, Y. Z., Shu, D., and Liu, H. K., "Polyoxometallate-stabilized Pt-Ru Catalysts on Multiwalled Carbon Nanotubes: Influence of Preparation Conditions on the Performance of Direct Methanol Fuel Cells," J. Power Source, 184(2), 361-369 (2008). Impact factor: 4.283 https://doi.org/10.1016/j.jpowsour.2008.03.051
  28. Han, D. M., Guo, Z .P., Zeng, R., Kim, C. J., Meng, Y. Z., and Liu, H. K., "Multiwalled Carbon Nanotube-supported Pt/Sn and Pt/Sn/PMo12 Electrocatalysts for Methanol Electro-oxidation,". Int. J. Hyd. E., 34(5), 2426-2434 (2009). https://doi.org/10.1016/j.ijhydene.2008.12.073
  29. AriCo, A. S., Srinivasan, S., and Antonucci, V., "DMFCs: From Fundamental Aspects to Technology Development," Fuel Cells, 1(2), 133-161 (2001). https://doi.org/10.1002/1615-6854(200107)1:2<133::AID-FUCE133>3.0.CO;2-5
  30. Liu, P., and Norskov, J. K., "Kinetics of the Anode Processes in PEM Fuel Cells - The Promoting Effect of Ru in PtRu Anodes." Fuel Cells, 1(3-4), 192-201 (2001). https://doi.org/10.1002/1615-6854(200112)1:3/4<192::AID-FUCE192>3.0.CO;2-M
  31. Frelink, T., Visscher, W., and Veen, J. A. R. V., "On the Role of Ru and Sn as Promotors of Methanol Electro-oxidation over Pt," Surf. Sci., 335, 353-360 (1995). https://doi.org/10.1016/0039-6028(95)00412-2
  32. Samjeske, G., Wang, H., Loffler, T., and Baltruschat, H., "CO and Methanol Oxidation at Pt-electrodes Modified by Mo," Electrochim. Acta, 47(22-23), 3681-3692 (2002). https://doi.org/10.1016/S0013-4686(02)00338-9
  33. Mneyuki, T., and Hideaki, K., "$H_2$ Dissociative Adsorption on Strained/CO-Precovered Pt," Jpn. J. Appl. Phys., 45, 1219-1221 (2006). https://doi.org/10.1143/JJAP.45.1219
  34. Hyun, M. S., Kim, S. K., Lee, B. R., Peck, D. H., Shul, Y. G., and Jung, D. H., "Effect of $NaBH_4$ Concentration on the Characteristics of PtRu/C Catalyst for the Anode of DMFC Prepared by the Impregnation Method," Catal. Today, 132, 138-145 (2008). https://doi.org/10.1016/j.cattod.2007.12.034

Cited by

  1. Electrochemical Behavior of Pt-Ru Catalysts on Zeolite-templated Carbon Supports for Direct Methanol Fuel Cells vol.35, pp.12, 2013, https://doi.org/10.5012/bkcs.2014.35.12.3576