DOI QR코드

DOI QR Code

A Study of Cleaning Technology for Zirconium Scrap Recycling in the Nuclear Industry

원자력산업에서 지르코늄 스크랩 재활용을 위한 세정기술에 관한 연구

  • Lee, Ji-Eun (KEPCO Nuclear Fuel Company, Ltd. Tube Cleaning & Heat Treatment Section) ;
  • Cho, Nam-Chan (KEPCO Nuclear Fuel company, Ltd., Radiation & Environment Management Dept.) ;
  • An, Chang-Mo (KEPCO Nuclear Fuel Company, Ltd. Tube Cleaning & Heat Treatment Section) ;
  • Noh, Jae-Soo (Korea University of Technology and Education School of Advanced Materials Engineering) ;
  • Moon, Jong-Han (KEPCO Nuclear Fuel Company, Ltd. Tube Cleaning & Heat Treatment Section)
  • 이지은 (한전원자력연료 튜브세정열처리부) ;
  • 조남찬 (한전원자력연료 방사선환경실) ;
  • 안창모 (한전원자력연료 튜브세정열처리부) ;
  • 노재수 (한국기술교육대학교 신소재공학부) ;
  • 문종한 (한전원자력연료 튜브세정열처리부)
  • Received : 2013.07.15
  • Accepted : 2013.08.14
  • Published : 2013.09.30

Abstract

In this study, we optimized the removal condition of contaminants attached on the scrap surface to recycle the scrap generated from the Zr alloy tube manufacturing process back to the nuclear grade. The main contaminant is remnant of watersoluble cooling lubricant that is used in the pilgering manufacture during the tube production, and it is assumed to be compressed and carbonized on the surface of tube. Zirlo alloy tube of ${\phi}9.50mm$, which has high occurrence frequency of scrap, was selected as the object to be cleaned, and cleaning abilities of reagents were evaluated by measuring the characteristics of contaminants remained and by analyzing the surface of the tube after cleaning process. For evaluation of each cleaning agent, we selected two types of sodium hydroxide series and three types of potassium hydroxide series. Furthermore, to confirm dependence on tempe-rature and ultrasonic intensities, cleaning at the room temperature, $40^{\circ}C$, and $60^{\circ}C$ was conducted, and results showed that higher the cleaning temperature and higher the ultrasonic intensity, better the cleaning effect. As a result of the bare-eye inspection, while the use of sodium hydroxide provided satisfactory condition on the tube surface, the use of potassium hydroxide series provided satisfactory condition on the tube surface only when the ultrasonic intensity was over 120 W. In the cleaning effect analysis using the gravimetric method, cleaning efficiency of sodium hydroxide series was as high as 97.6% ($60^{\circ}C$, 120 W), but since the tube surface condition was poor after the use of potassium hydroxide, the gravimetric method was not appropriate. In the analytical result of surface contaminants on the tube surface, C, O, Ca, and Zr were detected, and mainly C and O dominated the proportion of contaminants. It was also found that the degree of cleaning on the tube affected the componential ratio of C and O; if the degree of cleaning is high, or if cleaning is well-conducted, the proportion of C is decreased, and the proportion of O is increased. Based on these results, optimal cleaning for application in the industry can be expected by categorizing cleaning process into three steps of Alkali cleaning, Rinsing, and Drying and by adjusting cleaning parameters in each step.

본 연구에서는 지르코늄 피복관 제조공정에서 발생되는 스크랩을 원전급(nuclear grade)으로 재활용하기 위해 스크랩 표면에 부착되어 있는 오염물 제거조건을 최적화하였다. 주 오염물은 피복관 제조시 필거링 공정에서 사용하고 있는 수용성 냉각윤활제 잔류물로서 튜브 표면에 압착 및 탄화된 것으로 가정된다. 스크랩 발생 빈도가 높은 ${\phi}9.50mm$, zirlo 합금 튜브를 피 세정 대상물로 선정하여 세정 후 피 세정물 표면에 잔존하고 있는 오염물의 특성분석과 피 세정물의 표면 성분분석으로 세정성을 평가하였다. 세정제별 세정능력을 평가하기 위하여 수산화나트륨(sodium hydroxide) 계열 2종과 수산화칼륨(potassium hydroxide) 계열 3종을 선정하여 비교하였다. 또한 온도 및 초음파 강도에 따른 세정 효과 분석을 위해 상온, $40^{\circ}C$, $60^{\circ}C$에서 각각 세정한 결과, 세정온도 및 초음파 강도가 높을수록 세정효과도 높은 것으로 나타났다. 육안검사 결과 수산화나트륨 계열은 초음파 강도와 무관하게 모두 양호한 것으로 나타났으나 수산화칼륨 계열은 초음파 강도 120 W 이상에서 피 세정물의 표면상태가 양호한 것으로 나타났다. 중량측정법에 의한 세정효과 분석결과 수산화나트륨 계열은 세정효율이 97.6% ($60^{\circ}C$, 120 W)까지 나타났으나 수산화칼륨 계열은 피 세정물의 표면상태 불량으로 중량측정 방법을 적용하는 것이 부적합한 것으로 나타났다. 피 세정물의 표면 오염물 분석 결과 C, O, Ca, Zr 성분이 검출되었으며 그 중 C, O의 성분이 대부분을 차지하였음을 알 수 있었다. 피 세정물의 세정 정도에 따라 C, O 구성 비율의 변화가 큰 것으로 나타났으며 세정이 잘될수록 C의 구성비율이 감소되며 상대적으로 O의 구성 비율이 증가되었다. 본 연구 결과를 바탕으로 산업현장에 적용하기 위하여 세정공정을 알카리세정, 수세, 건조의 3단계로 구분하고 각 단계별로 세정변수를 조정함으로써 세정효과의 극대화를 기대할 수 있다.

Keywords

References

  1. Huitaek, Y., Hwangryong, Y., Youngseo, P., and Hwanil H., "Practices in Surface Treatment," 1st ed., Dongmyungsa, Korea, 2012, pp. 59-78
  2. "Standard Specification for Zirconium Sponge and Other Forms of Virgin Metal for Nuclear Application," ASTM. B349.
  3. Dongwon, L., "The Production of Zirconium Development Trend," State of the Art Report, 21(4), 66-73 (2010).
  4. KyoungTae, P., "Metalization and Purification Behavior of Zirconium by Combustion Synthesis and Molten Salt Electrorefining for Nuclear Applications," Ph.D. Dissertation, Chungnam national university, Korea, 2013.
  5. Hyungjoon, K., "Surface cleaning Technology and Its Evaluation Method for Metal," Korean J. Metals Mater., 8(4), 358-364 (1995)
  6. Myongbok, L., and JungHui, L., "Introduction of Vacuum & Surface Analysis Technology," 1st ed., Duyangsa, Korea, 2008, pp. 195-235
  7. Sunkyu, K., "Surface Technology," 1st ed., Duyangsa, Korea, 2011, pp. 131-167

Cited by

  1. Recovery of Zirconium from Spent Pickling Acid through Precipitation Using BaF2 and Electrowinning in Fluoride Molten Salt vol.26, pp.12, 2016, https://doi.org/10.3740/MRSK.2016.26.12.681
  2. Electrowinning of Nuclear-Grade Zr from Ba 2 ZrF 8 –ZrF 4 Salt System vol.165, pp.2, 2018, https://doi.org/10.1149/2.0281802jes
  3. BaF2 침전 공정을 통한 폐산세정액 내 Zr 회수 시 잔존 Ba 및 Zr이 산세정에 미치는 영향 vol.26, pp.5, 2013, https://doi.org/10.7844/kirr.2017.26.5.97
  4. Electrorefining of CuZr Alloy Using Ba2ZrF8-LiF Electrolyte vol.27, pp.12, 2017, https://doi.org/10.3740/mrsk.2017.27.12.672
  5. 폐 산세 용액으로부터 공침 반응에 의한 지르코늄 회수 시 BaF2 입도 영향 및 Ba2ZrF8의 진공증류 특성 vol.26, pp.6, 2013, https://doi.org/10.7844/kirr.2017.26.6.29
  6. Eco-Friendly Pretreatment of Titanium Turning Scraps and Subsequent Preparation of Ferro-Titanium Ingots vol.57, pp.9, 2013, https://doi.org/10.3365/kjmm.2019.57.9.569
  7. 타이타늄 터닝 스크랩 내 절삭유 제거를 위한 초음파 침지-스팀 및 고온 건조 공정 vol.30, pp.1, 2013, https://doi.org/10.7844/kirr.2021.30.1.60
  8. 타이타늄 스크랩을 활용한 페로 -타이타늄 전처리 공정 적용 모합금 주조 vol.41, pp.2, 2021, https://doi.org/10.7777/jkfs.2021.41.2.139