DOI QR코드

DOI QR Code

Utilization of Supercritical Carbon Dioxide for the Preparation of 2-Hydroxypropyl-β-Cyclodextrin Microparticles and Their Inclusion Complexes with Ibuprofen

초임계 이산화탄소를 이용한 2-Hydroxypropyl-β-Cyclodextrin 미립자와 이부프로펜과의 포접복합체 제조

  • Ryu, Jong-Hoon (Department of Chemical Engineering, The University of Suwon)
  • 유종훈 (수원대학교 공과대학 화학공학과)
  • Received : 2013.05.16
  • Accepted : 2013.06.15
  • Published : 2013.09.30

Abstract

The microparticles of 2-hydroxypropyl-${\beta}$-cyclodextrin (HP-${\beta}$-CD) were prepared using aerosol solvent extraction system (ASES) by employing supercritical carbon dioxide as an antisolvent, The effects of various process parameters such as temperature, pressure, solution concentration and solution flow rate on the formation of HP-${\beta}$-CD microparticles were investigated. The HP-${\beta}$-CD microparticles prepared by the ASES process were observed to consist of agglomerates of nano-sized (50-200 nm) particles. When an aqueous solution of ethanol was used as a solvent for HP-${\beta}$-CD, the HP-${\beta}$-CD particles were found to be spherical in shape and to become larger as the water content increased. It was confirmed that the micronization of HP-${\beta}$-CD using the ASES process could enhance the inclusion efficiency of ibuprofen/HP-${\beta}$-CD complexes significantly.

초임계 이산화탄소를 역용매로 이용하는 aerosol solvent extraction system (ASES) 방법을 사용하여 HP-${\beta}$-CD 미립자를 제조하였으며, 공정변수가 입자의 크기와 형태에 미치는 영향을 조사하였다. 또한, 초임계 이산화탄소를 이용하여 이부프로펜과 HP-${\beta}$-CD의 포접복합체를 제조하였으며, ASES 공정에 의해 변형된 HP-${\beta}$-CD의 입자 형상이 포접효율에 미치는 영향에 대해 고찰하였다. ASES 공정으로 제조된 HP-${\beta}$-CD 미립자는 50~200 nm 크기의 나노 입자들이 응집된 입자 형상을 나타내었다. 에탄올 수용액을 HP-${\beta}$-CD의 용매로 사용한 경우 구형의 입자가 제조되었으며, 물의 양이 증가함에 따라 입자의 크기가 증가하였다. 초임계 이산화탄소를 이용해 고체상태에서 이부프로펜/HP-${\beta}$-CD 포접복합체를 제조하는 경우 초임계 ASES 방법에 의한 미세입자화 공정을 통해 포접효율을 향상시킬 수 있는 가능성을 확인하였다.

Keywords

References

  1. Jain, R. A., "The Manufacturing Techniques of Various Drug Loaded Biodegradable Poly (Lactide-co-Glycolide) (PLGA) Devices," Biomaterials, 21(23), 2475-2490 (2000). https://doi.org/10.1016/S0142-9612(00)00115-0
  2. Lassalle, V., and Ferreira, M. L., "PLA Nano- and Microparticles for Drug Delivery: An Overview of the Methods of Preparation," Macromol. Biosci., 7(6), 767-783 (2007). https://doi.org/10.1002/mabi.200700022
  3. Yeo, S. D., and Kiran, E., "Formation of Polymer Particles with Supercritical Fluids: A Review," J. Supercrit. Fluids, 34(3), 287-308 (2005). https://doi.org/10.1016/j.supflu.2004.10.006
  4. Bahrami, M., and Ranjbarian, S., "Production of Micro- and Nano-Composite Particles by Supercritical Carbon Dioxide," J. Supercrit. Fluid, 40(2), 263-283 (2007). https://doi.org/10.1016/j.supflu.2006.05.006
  5. Kompella, U. B., and Koushik, K., "Preparation of Drug Delivery Systems Using Supercritical Fluid Technology," Crit. Rev. Ther. Drug Carr. Syst., 18(2), 173-199 (2001).
  6. Martin, A., and Cocero, M. J., "Micronization Processes with Supercritical Fluids: Fundamentals and Mechanisms," Adv. Drug Deliv. Rev., 60(3), 339-350 (2008). https://doi.org/10.1016/j.addr.2007.06.019
  7. Shin, M. S., and Kim, H., "Preparation of Poly (N-Vinyl-2-Pyrrolidone) Microparticles Using Supercritical Anti-solvent," Clean Tech., 14(4), 242-247 (2008).
  8. Challa, R., Ahuja, A., Ali, J., and Khar, R. K., "Cyclodextrin in Drug Delivery: An Updated Review," AAPS Pharm. Sci. Technol., 6(2), E329-E357 (2005). https://doi.org/10.1208/pt060243
  9. De Marco, I., and Reverchon, E., "Supercritical Anti-solvent Micronization of Cyclodextrins," Powder Technol., 183(2), 239-246 (2008). https://doi.org/10.1016/j.powtec.2007.07.038
  10. Shehatta, I., Al-Marzouqi, A. H., Jobe, B., and Dowaidar, A., "Enhancement of Aqueous Solubility of Itraconazole by Complexation with Cyclodextrins Using Supercritical Carbon Dioxide," Can. J. Chem., 83(10), 1833-1838 (2005). https://doi.org/10.1139/v05-181
  11. Hussein K., Turk, M., and Wahl, M. A., "Comparative Evaluation of Ibuprofen/${\beta}$-Cyclodextrin Complexes Obtained by Supercritical Carbon Dioxide and Other Conventional Methods," Pharm. Res., 24(3), 585-592 (2007). https://doi.org/10.1007/s11095-006-9177-0
  12. Tozuka, Y., Fujito, T., Moribe, K., and Yamamoto, K., "Ibuprofen-cyclodextrin Inclusion Complex Formation Using Supercritical Carbon Dioxide," J. Incl. Phenom. Macrocycl. Chem., 56(1-2), 33-37 (2006). https://doi.org/10.1007/s10847-006-9057-6
  13. Turk, M., Upper, G., Steurenthaler, M., Hussein, Kh., and Wahl, M. A., "Complex Formation of Ibuprofen and ${\beta}$-Cyclodextrin by Controlled Particle Deposition (CPD) Using SC-$CO_2$," J. Supercrit. Fluids, 39(3), 435-443 (2007). https://doi.org/10.1016/j.supflu.2006.02.009
  14. Bandi, N., Wei, W., Roberts, C. B., Kotra, L. P., and Kompella, U. B., "Preparation of Budesonide- and Indomethacin-Hydroxypropyl-${\beta}$-Cyclodexrin (HPBCD) Complexes Using a Single- Step, Organic-Solvent-Free Supercritical Fluid Process," Eur. J. Pharm. Sci., 23(2), 159-168 (2004). https://doi.org/10.1016/j.ejps.2004.06.007
  15. Chen, A.-Z., Pu, X.-M., and Kang, Y.-Q., "Study of Poly (L-Lactide) Microparticles Based on Supercritical $CO_2$," J. Mater. Sci.- Mater. Med., 18(12), 2339-2345 (2007). https://doi.org/10.1007/s10856-007-3173-8
  16. Lee, L. Y., Kim, L. K., Hua, J., and Wang, C.-H., "Jet Breakup and Droplet Formation in Near-critical Regime of Carbon Dioxide-Dichloromethane System," Chem. Eng. Sci., 63(13), 3366-3378 (2008). https://doi.org/10.1016/j.ces.2008.04.015
  17. Reverchon, E., De Marco, I., Caputo, G., and Della Porta, G., "Pilot Scale Micronization of Amoxicillin by Supercritical Anti-solvent Precipitation," J. Supercrit. Fluids, 26(1), 1-7 (2003). https://doi.org/10.1016/S0896-8446(02)00186-9
  18. Zhong, Q., Jin, M., Xiao, D., Huilin T., and Zhang, W., "Application of Supercritical Anti-solvent Technologies for the Synthesis of Delivery Systems of Bioactive Food Components," Food Biophys., 3(2), 186-190 (2008). https://doi.org/10.1007/s11483-008-9059-6