DOI QR코드

DOI QR Code

Biochar for soil carbon sequestration

토양탄소격리를 위한 바이오차

  • Woo, Seung Han (Department of Chemical and Biological Engineering, Hanbat National University)
  • 우승한 (한밭대학교 화학생명공학과)
  • Received : 2013.05.08
  • Accepted : 2013.09.27
  • Published : 2013.09.30

Abstract

Biochar is charred materials generated during pyrolysis processes in the absence of oxygen using biomass, resulting in high carbon contents. In recent years, biochar has attracted more increasingly due to its potential role in carbon sequestration, renewable energy, waste management, soil amendment for agricultural use, and environmental remediation. Since biochar has a long-term stability in soil for thousands of years, biochar can be carbon negative compared to carbon-neutral biomass energy that decomposes eventually. Moreover, when biochar is applied to soil, crop production can be largely improved due to its high pH and its superior ability to retain water and nutrients. This paper review the research trends of biochar including the principles of carbon sequestration by biochar, its physico-chemical properties, and its applications on agricultural and environmental area.

바이오차는 바이오매스를 이용하여 산소가 없는 환경에서 열분해할 때 만들어지는 탄소함량이 높은 고체 물질이다. 바이오차의 탄소격리, 재생 에너지, 폐기물 관리, 농업 생산성 개선, 환경복원 관점에서의 중요한 기능으로 인해 최근에 크게 주목을 받고 있다. 바이오차는 토양에서 수천 년간 안정적으로 보존될 수 있기 때문에, 결국에는 분해될 수 밖에 없어 탄소중립이라 불리는 바이오매스 에너지와는 달리 탄소 네가티브의 특징을 가지고 있다. 게다가 바이오차를 토양에 적용하면 바이오차의 높은 pH와 물 및 영양분의 우수한 보유능으로 인해 농업 생산성이 크게 개선될 수 있다. 본 논문은 바이오차의 탄소격리 원리와 물리화학적 특징, 농업 및 환경에의 적용과 관련된 최근의 연구 동향을 총설하여 기술하고자 한다.

Keywords

References

  1. Marris, E., "Black is the New Green," Nature, 442, 624-626 (2006). https://doi.org/10.1038/442624a
  2. Lehmann, J., "A Handful of Carbon," Nautre, 447, 143-144 (2007). https://doi.org/10.1038/447143a
  3. Glaser, B., and Birk, J. J., "State of the Scientific Knowledge on Properties and Genesis of Anthropogenic Dark Earths in Central Amazonia," Geochim. Cosmochim. Ac., 82, 39-51 (2012). https://doi.org/10.1016/j.gca.2010.11.029
  4. Lehmann, J., and Joseph, S. "Biochar for environmental management: An introduction," in Lehmann, J., and Joseph, S., Eds., Biochar for Environmental Management: Science and Technology, Earthscan, London, 2009, pp. 1-12.
  5. Yanai, Y., Toyota, K., and Okazaki, M., "Effects of Charcoal Addition on N2O Emissions from Soil Resulting from Rewetting Air-dried Soil in Short-term Laboratory Experiments," Soil Sci. Plant Nutr., 53, 181-188 (2007). https://doi.org/10.1111/j.1747-0765.2007.00123.x
  6. Werner, C., Kiese, R., and Butterbach-Bahl, K., "Soil-atmosphere Exchange of $N_2O,\;CH_4,\;and\;CO_2$ and Controlling Environmental Factors for Tropical Rain Forest Sites in Western Kenya," J. Geophys. Res., 112, 1-15 (2007).
  7. Zimmerman, A. R., Gao, B., and Ahn, M., "Positive and Negative Carbon Mineralization Priming Effects Among a Variety of Biochar-amended Soils," Soil Biol. Biochem., 43, 1169-1179 (2011). https://doi.org/10.1016/j.soilbio.2011.02.005
  8. http://www.coolplanet.com/
  9. Brunn, S., and Luxhoi, J., "Is Bbiochar Pproduction Rreally Ccarbon-negative?" Enviorn. Sci. Technol., 42(5), 1388 (2008). https://doi.org/10.1021/es087078g
  10. Mathews, J. A., "Carbon-negative Bbiofuels," Energ. Policy, 36(3), 940-945 (2008). https://doi.org/10.1016/j.enpol.2007.11.029
  11. Pratt, K., and Moran, D., "Evaluating the Ccost-effectiveness of Gglobal Bbiochar Mmitigation Ppotential," Biomass Bioenerg., 34(8), 1149-1158 (2010). https://doi.org/10.1016/j.biombioe.2010.03.004
  12. Whitman, T., and Lehmann, J., "Biochar-One Way Forward for Soil Carbon in Offset Mechanisms in Africa?" Environ. Sci. Policy, 12(7), 1024-1027 (2009). https://doi.org/10.1016/j.envsci.2009.07.013
  13. Roberts, K. G., Gloy, B. A., Joseph, S., Scott, N. R., and Lehmann, J., "Life Cycle Assessment of Biochar Systems: Estimating the Energetic, Economic, and Climate Change Potential," Environ. Sci. Technol., 44(2), 827-833 (2010). https://doi.org/10.1021/es902266r
  14. Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J., and Joseph, S., "Sustainable Biochar to Mitigate Global Climate Change," Nat. Commun., 1(5), 1-9 (2010).
  15. http://en.wikipedia.org/wiki/Carbon_cycle
  16. Davison, E. A., and Janssens, I. A., "Temperature Sensitivity of Soil Carbon Decompostion and Feedbacks to Climate Change," Nature, 440, 165-173 (2006). https://doi.org/10.1038/nature04514
  17. Gerzabek, M., Pichlmayer, F., Kirchmann, H., and Haberhauer, G., "The Response of Soil Organic Matter to Manure Amendments in a Long-term Experiment at Ultuna, Sweden," Eur. J. Soil Sci., 48, 273-282 (1997). https://doi.org/10.1111/j.1365-2389.1997.tb00547.x
  18. Lehmann, J., Gaunt, J., and Rondon, M., "Bio-char Sequestration in Terrestrial Ecosystems-a Review," Mitig. Adapt. Str. Gl., 11, 403-427 (2006). https://doi.org/10.1007/s11027-005-9006-5
  19. Gaunt, J. L., and Lehmann, J., "Energy Balance and Emissions Associated with Biochar Sequestration and Pyrolysis Bioenergy Production," Environ. Sci. Technol., 42, 4152-4158 (2008). https://doi.org/10.1021/es071361i
  20. Wrage, N., van Groeningen, J. W., Oenema, O., and Baggs, E. M., "Distinguishing between Soil Sources of $N_2O$ Using a New $^{15}N-$ and $^{18}O$-enrichment Method," Rapid Commun. Mass Sp., 19, 3298-3306 (2005). https://doi.org/10.1002/rcm.2191
  21. DeLuca, T. H., MacKenzie, M. D., Gundale, M. J., and Holben, W. E., "Wildfire-produced Charcoal Directly Influences Nitrogen Cycling in Ponderosa Pine Forests," Soil Sci. Soc. Am. J., 70, 448-453 (2006). https://doi.org/10.2136/sssaj2005.0096
  22. Bridgwater, A., "Biomass Pyrolysis," IEA Bioenergy Task 34, 1-19. 2007.
  23. Lehmann, J., "Bio-energy in the Black," Front. Ecol. Environ, 5(7), 381-387 (2007). https://doi.org/10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2
  24. Bridgwater, A. V., and Peococke, G. V. C., "Fast Pyrolysis Processes for Biomass," Renew. Sust. Energ. Rev., 4, 1-73 (2000). https://doi.org/10.1016/S1364-0321(99)00007-6
  25. http://www.nationmaster.com/graph/ene_cha_pro_fro_cha_pla-energy-biochar-production-from%20-plants
  26. Bird, M. I., and Ascough, P. L. "Isotopes in Pyrogenic Carbon: A Review," Org. Geochem., 42, 1529-1539 (2012). https://doi.org/10.1016/j.orggeochem.2010.09.005
  27. Diwnie, A., Crosky, A., and Munroe, P., "Physical Properties of Biochar," in Lehmann, J., and Joseph, S., Eds., Biochar for Environmental Management: Science and Technology, Earthscan, London, 2009, pp. 13-32.
  28. Cetin, E., Moghtaderi, B., Gupta, R., and Wall, T. F., "Influence of Pyrolysis Conditions on the Structure and Gasification Reactivity of Biomass Chars," Fuel, 83, 2139-2150 (2004). https://doi.org/10.1016/j.fuel.2004.05.008
  29. Guo, J., and Lua, A. C., "Characterization of Chars Pyrolyzed from Oil Palm Stones for Preparation of Activated Carbons," J. Anal. Appl. Pyrol., 46(2), 113-125 (1998). https://doi.org/10.1016/S0165-2370(98)00074-6
  30. Baldock, J. A., and Smernik, R. J., "Chemical Composition and Bioavailability of Thermally Altered Pinus Resinosa (Red pine) Wood," Org. Geochem., 33, 1093-1109 (2002). https://doi.org/10.1016/S0146-6380(02)00062-1
  31. Yang, H., Yan, R., Chen, H., Lee, D. H., and Zheng, C., "Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis," Fuel, 86, 1781-1788 (2007). https://doi.org/10.1016/j.fuel.2006.12.013
  32. Druffel, E. R. M., "Comments on the Importance of Black Carbon in the Global Carbon Cycle," Mar. Chem., 9, 197-200 (2004).
  33. Cheng, C. -H., Lehmann J., Thies, J. E., Burton, S. D., and Engelhard M. H. "Oxidation of Black Carbon through Biotic and Abiotic Processes," Org. Geochem., 37, 1477-1488 (2006). https://doi.org/10.1016/j.orggeochem.2006.06.022
  34. Hamer U., Marschner B., Brodowski S., and Amelung W. "Interactive Priming of Black Carbon and Glucose Mineralization," Org. Geochem., 35, 823-830 (2004). https://doi.org/10.1016/j.orggeochem.2004.03.003
  35. Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O''Neill, B., Skjemstad, J. O., Thies, J., Luizao, F. J., Petersen, J., and Neves, E. G. "Black Carbon Increases Cation Exchange Capacity in Soils," Soil Sci. Soc. Am. J., 70, 1719-1730 (2006). https://doi.org/10.2136/sssaj2005.0383
  36. DeLuca, T. H., MacKenzie, M. D., and Gundale, M. J. "Biochar Effects on Soil Nutrient Transformations," in Lehmann, J., and Joseph, S., Eds., Biochar for Environmental Management: Science and Technology, Earthscan, London, 2009, pp. 251-270.
  37. Yang, Y. N., Sheng, G. Y., and Huang, M. "Bioavailability of Diuron in Soil Containing Wheat-straw-derived Char," Sci. Total Environ., 354, 170-178 (2006). https://doi.org/10.1016/j.scitotenv.2005.01.026
  38. Lehmann, J., da Silva, J. P. Jr., Steiner, C., Nehls, T., Zech, W., and Glaser, B. "Nutrient Availability and Leaching in an Archaeological Anthrosol and a Ferralsol in the Central Amazon Basin: Fertiliser, Manure and Charcoal Amendments," Plant Soil, 249, 343-357 (2003). https://doi.org/10.1023/A:1022833116184
  39. Singh, B. P., Hatton, B. J., Singh, B., Cowie, A. L., and Kathuria, A. "Influence of Biochars on Nitrous Oxide Emission and Nitrogen Leaching from two Contrasting Soils," J. Environ. Qual., 39(4), 1224-1235 (2010). https://doi.org/10.2134/jeq2009.0138
  40. van Zwieten, L., Kimber, S., Morris, S., Chan, Y. K., Downie, A., Rust, J., Joseph, S., and Cowie, A. "Effects of Biochar from Slow Pyrolysis of Papermill Waste on Agronomic Performance and Soil Fertility," Plant Soil, 327, 235-246 (2010). https://doi.org/10.1007/s11104-009-0050-x
  41. Warnock, D. D., Mummey, D. L., McBride, B., Major, J., Lehmann, J., and Rillig, M. C., "Influences of Non-herbaceous Biochar on Arbuscular Mycorrhizal Fungal Abundances in Roots and Soils: Results from Growth-chamber and Field Experiments," Appl. Soil Ecol., 46, 450-456 (2010). https://doi.org/10.1016/j.apsoil.2010.09.002
  42. Lehmann, J., Rillig, M., Thies, J., Masiello, C. A., Hockaday, W. C., and Crowley, D., "Biochar Effects on Soil Biota-a Review," Soil Biol. Biochem., 43, 1812-1836 (2011). https://doi.org/10.1016/j.soilbio.2011.04.022
  43. Liang, B. Q., Lehmann, J., Sohi, S. P., Thies, J. E., O''Neill, B., Trujillo, L., Gaunt, J., Solomon, D., Grossman, J., Neves, E. G., and Luizao, F. J., "Black Carbon Affects the Cycling of Non-black Carbon in Soil," Org. Geochem., 41, 206-213 (2010). https://doi.org/10.1016/j.orggeochem.2009.09.007
  44. Luo, Y., Durenkamp, M., De Nobili, M., Lin, Q., Devonshire, B. J., and Brookes, P. C., "Microbial Biomass Growth, Following Incorporation of Biochars Produced at $350\;^{\circ}C\;or\;700\;^{\circ}C$, in a Silty-clay Loam Soil of High and Low pH," Soil Biol. Biochem., 57, 513-523 (2013). https://doi.org/10.1016/j.soilbio.2012.10.033
  45. Chan, K. Y., and Xu, Z., "Biochar: Nutrient Properties and their Enhancement," in Lehmann, J., and Joseph, S., Eds., Biochar for Environmental Management: Science and Technology, Earthscan, London, 2009, pp. 67-84.
  46. Berglund, L. M., DeLuca, T. H., and Zackrisson, O., "Activated Carbon Amendments to Soil Alters Nitrification Rates in Scots Pine Forests," Soil Biol. Biochem., 36(12), 2067-2073 (2004). https://doi.org/10.1016/j.soilbio.2004.06.005
  47. Major, J., Steiner, C., Downie, A., Lehmann, J., "Biochar Effects on Nutrient Leaching," in Lehmann, J., and Joseph, S., Eds., Biochar for Environmental Management: Science and Technology, Earthscan, London, 2009, pp. 67-84.
  48. Hua, L., Wu, W., Liu, Y., McBride, M. B., and Chen, Y., "Reduction of Nitrogen Loss and Cu and Zn Mobility During Sludge Composting with Bamboo Charcoal Amendment," Environ. Sci. Pollut. R., 16(1), 1-9 (2009).
  49. Hilber, I., Wyss, G. S., Mäder, P., Bucheli, T. D., Meier, I., Vogt, L., and Schulin, R., "Influence of Activated Charcoal Amendment to Contaminated Soil on Dieldrin and Nutrient Uptake by Cucumbers," Environ. Pollut., 157(8-9), 2224-2230 (2009). https://doi.org/10.1016/j.envpol.2009.04.009
  50. Steiner, C., Glaser, B., Teixeira, W. G., Lehmann, J., Blum, W. E. H., and Zech, W., "Nitrogen Retention and Plant Uptake on a Highly Weathered Central Amazonian Ferralsol Amended with Compost and Charcoal," J. Plant Nutr. Soil Sc., 171(6), 893-899 (2008). https://doi.org/10.1002/jpln.200625199
  51. Major, J., Lehmann, J., Rondon, M., and Goodale, C., "Fate of Soil-applied Black Carbon: Downward Migration, Leaching and Soil Respiration," Glob. Change Biol., 16(4), 1366-1379 (2010). https://doi.org/10.1111/j.1365-2486.2009.02044.x
  52. Asai, H., Samson, B. K., Stephan, H. M., Songyikhangsuthor, K., Homma, K., Kiyono, Y., Inoue, Y., Shiraiwa, T., and Horie, T., "Biochar Amendment Techniques for Upland Rice Production in Northern Laos. 1. Soil Physical Properties, Leaf SPAD and Grain Yield," Field Crop. Res., 111(1-2), 81-84 (2009). https://doi.org/10.1016/j.fcr.2008.10.008
  53. Chan, K. Y., van Zwieten, L., Meszaros, I., Downie, A., and Joseph, S., "Agronomic Values of Greenwaste Biochar as a Soil Amendment," Aust. J. Soil Res., 45(8), 629-634 (2007). https://doi.org/10.1071/SR07109
  54. Kim, J. -S., Sparovek, G., Longo, R. M., De Melo, W. J., and Crowley, D., "Bacterial Diversity of Terra Preta and Pristine Forest Soil from the Western Amazon," Soil Biol. Biochem., 39(2), 684-690 (2007). https://doi.org/10.1016/j.soilbio.2006.08.010
  55. Thies, J. E., and Rillig, M. C., "Characteristics of Biochar: Biological Properties," in Lehmann, J., and Joseph, S., Eds., Biochar for Environmental Management: Science and Technology, Earthscan, London, 2009, pp. 85-106.
  56. Jeffery, S., Verheijen, F. G. A., van der Velde, M., and Bastos, A., C., "A Quantitative Review of the Effects of Biochar Application to Soils on Crop Productivity Using Meta-analysis," Agr. Ecosyst. Environ., 144, 175-187 (2011). https://doi.org/10.1016/j.agee.2011.08.015

Cited by

  1. Adsorption Characteristics of Aqueous Ammonium Using Rice hull-Derived Biochar vol.34, pp.3, 2015, https://doi.org/10.5338/KJEA.2015.34.3.25
  2. Analysis of Environmental Impacts for the Biochar Production and Soil Application vol.36, pp.7, 2014, https://doi.org/10.4491/KSEE.2014.36.7.461
  3. Effect of Sesame Straw Biochar Application on Soil Physics and Nitrous Oxide Emission in Upland Soil vol.49, pp.3, 2016, https://doi.org/10.7745/KJSSF.2016.49.3.259
  4. 단풍잎돼지풀 기반 바이오차를 이용한 비소 및 중금속 오염 농경지의 안정화 vol.21, pp.6, 2013, https://doi.org/10.7857/jsge.2016.21.6.087
  5. 연소 조건과 수종을 달리한 블랙카본의 물리화학적 성질 및 세슘의 흡착 특성 vol.33, pp.6, 2013, https://doi.org/10.15681/kswe.2017.33.6.689
  6. Effect of different types of biochar on the growth of Chinese cabbage (Brassica chinensis) vol.45, pp.2, 2018, https://doi.org/10.7744/kjoas.20180033
  7. 볏짚 회분의 토양적용에 따른 양분 특성 변화 vol.60, pp.5, 2013, https://doi.org/10.5389/ksae.2018.60.5.105
  8. 배 전정지 바이오차 시용이 작물 생육 및 토양이화학성에 미치는 영향 vol.26, pp.4, 2013, https://doi.org/10.17137/korrae.2018.26.4.11
  9. 배추재배 시 바이오차 펠렛 완효성 비료의 적정 시용량 구명 vol.27, pp.1, 2013, https://doi.org/10.17137/korrae.2019.27.1.49
  10. 국내산 유기자원 우각을 활용한 유기질비료의 작물 생육 및 수량에 미치는 영향 vol.27, pp.2, 2013, https://doi.org/10.17137/korrae.2019.27.2.19
  11. Acidic Soil Improvement and Physicochemical Characteristics Using Red-mud and Biochar vol.41, pp.9, 2019, https://doi.org/10.4491/ksee.2019.41.9.483
  12. 왕겨 활성 바이오차 혼합 비율에 따른 우분 호기소화 시 온실가스 발생 특성 vol.39, pp.3, 2020, https://doi.org/10.5338/kjea.2020.39.3.26
  13. Effects of brewer’s spent grain biochar on the growth and quality of leaf lettuce (Lactuca sativa L. var. crispa.) vol.64, pp.1, 2021, https://doi.org/10.1186/s13765-020-00577-z