DOI QR코드

DOI QR Code

Photocatalysts for Hydrogen Production from Solar Water Splitting

태양광을 활용한 물분해 수소생산용 광촉매재료

  • 김정현 (서울시립대학교 화학공학과)
  • Received : 2013.06.03
  • Accepted : 2013.06.28
  • Published : 2013.09.30

Abstract

Researches on developing photocatalyst materials for hydrogen production from solar water splitting attract great attentions due to the unlimited and clean characteristics of the solar energy. In this review, photocatalysts used for hydrogen production from the solar water splitting are discussed in terms of material characteristics. In addition, various modification techniques applied to the photocatalysts for improving hydrogen production efficiency are summarized. Finally, light characteristics such as intensity, illumination density and wavelength cutoff are also discussed for the importance of hydrogen production rate.

미래의 무한 청정 에너지원으로 고려되고 있는 태양에너지를 활용하여 수소를 생산할 수 있는 광촉매재료에 대한 연구가 활발히 진행되고 있다. 본 총설에서는 태양광을 이용한 물분해 수소생산용 광촉매재료들에 대하여 알아보고, 현재까지 보고된 다양한 광촉매재료의 특성들을 검토하고자 한다. 또한, 다양한 광촉매재료를 활용하여 수소생산 효율을 높이기 위해서 시행되었던 촉매재료 개질 방법들을 통하여 향후 지속적으로 진행될 연구방향을 모색해 보고자 한다. 각각의 광촉매재료들이 활성을 가질 수 있는 빛의 영역을 알아보고, 광촉매 작용에 필수적인 광원, 광밀도, 파장영역 등의 중요성에 대해서도 토론한다.

Keywords

References

  1. Winter, C. -J., "Hydrogen Energy-abundant, Efficient, Clean: A Debate over the Energy-system-of-change," Int. J. Hydrogen Energy, 34, S1-S52 (2009). https://doi.org/10.1016/j.ijhydene.2009.05.063
  2. Fujishima, A., and Honda, K., "Electrochemical Photolysis of Water at a Semiconductor Electrode," Nature, 238, 37-38 (1972). https://doi.org/10.1038/238037a0
  3. Zaleska, A., "Doped-$TiO_2$: A Review," Recent Patents Eng., 2, 157-164 (2008). https://doi.org/10.2174/187221208786306289
  4. Fuerte, M. D. H. A., Maira, A. J., Martinez-Arias, A., Fernandez-Garcia, M., Conesa, J. C., and Soria, J., "Visible Light-activated Nanosized Doped-$TiO_2$ Photocatalysts," Chem. Commun., 24, 2718-2719 (2001).
  5. Anpo, M., "Use of Visible Light. Second-generation Titanium Dioxide Photocatalysts Prepared by the Application of an Advanced Metal Ion-implantation Method," Pure Appl. Chem., 72, 1787-1792 (2000). https://doi.org/10.1351/pac200072091787
  6. Ohno, T., Mitsui, T., and Matsumura, M., "Photocatalytic Activity of S-doped $TiO_2$ Photocatalyst under Visible Light," Chem. Lett., 32, 364-365 (2003). https://doi.org/10.1246/cl.2003.364
  7. Liu, Y., Chen, X., Li, J., and Burda, C., "Photocatalytic Degradation of Azo Dyes by Nitrogen-doped $TiO_2$ Nanocatalysts," Chemosphere, 61, 11-18 (2005). https://doi.org/10.1016/j.chemosphere.2005.03.069
  8. Yu, J. C., Zhang, L., Zheng, Z., and Zhao, J., "Synthesis and Characterization of Phosphated Mesoporous Titanium Dioxide with High Photocatalytic Activity," Chem. Mater., 15, 2280-2286 (2003). https://doi.org/10.1021/cm0340781
  9. Hirai, T., Suzuki, K., and Komasawa, I., "Preparation and Photocatalytic Properties of Composite CdS Nanoparticles-Titanium Dioxide Particles," J. Colloid Inteface Sci., 244, 262-265 (2001). https://doi.org/10.1006/jcis.2001.7982
  10. Chatterjee, D., and Mahata, A., "Demineralization of Organic Pollutants on the Dye Modified $TiO_2$ Semiconductor Particulate System using Visible Light," Appl. Catal. B Environ., 33, 119-125 (2001). https://doi.org/10.1016/S0926-3373(01)00170-9
  11. Zhou, W., Zheng, Y., and Wu, G., "Novel Luminescent RE/$TiO_2$ (RE = Eu, Gd) Catalysts Prepared by In-situ Sol-gel Approach Construction of Multi-functional Precursors and Their Photo or Photocatalytic Oxidation Properties," Appl. Surf. Sci., 252, 1387-1392 (2006).
  12. Ai, G., Sun, W. T., Zhang, Y.-L., and Peng, L.-M., "Nanoparticle and Nanorod $TiO_2$ Composite Photoelectrodes with Improved Performance," Chem. Commun., 47, 6608-6610 (2011). https://doi.org/10.1039/c1cc11092f
  13. In, S.-I., Nielsen, M. G., Vesborg, P. C. K., Hou, Y., Abrams, B. L., Henriksen, T. R., Hansen, O., and Chorkendorff, I., "Photocatalytic Methane Decomposition over Vertically Aligned Transparent $TiO_2$ Nanotube Arrays," Chem. Commun., 47, 2613-2615 (2011). https://doi.org/10.1039/c0cc02570d
  14. Zhang, S., Zhang, S., Peng, F., Zhang, H., Liu, H., and Zhao, H., "Electrodeposition of Polyhedral $Cu_2O\;on\;TiO_2$ Nanotube Arrays for Enhancing Visible Light Photocatalytic Performance," Electrochem. Commun., 13, 861-864 (2011). https://doi.org/10.1016/j.elecom.2011.05.022
  15. Xiang, W., Liu, X., Liu, H., Tong, D., Yang, J., and Peng, J., "Coaxial Heterogeneous Structure of $TiO_2$ Nanotube Arrays with CdS as a Superthin Coating Synthesized via Modified Electrochemical Atomic Layer Deposition," J. Am. Chem. Soc., 132, 12619-12626 (2010). https://doi.org/10.1021/ja1025112
  16. Chen, C., Cai, W., Long, M., Zhou, B., Wuu, Y., Wuu, D., and Feng, Y., "Synthesis of Visible-light Responsive Graphene Oxide/$TiO_2$ Composites with p/n Heterojunction," ACS Nano, 4, 6425-6432 (2010). https://doi.org/10.1021/nn102130m
  17. Yu, J., Ma, T., Liu, G., and Cheng, B., "Enhanced Photocatalytic Activity of Bimodal Mesoporous Titania Powders by $C_{60}$ Modification," Dalton Trans., 40, 6635-6644 (2011). https://doi.org/10.1039/c1dt10274e
  18. Fan, W., Lai, Q., Zhang, Q., and Wang, Y., "Nanocomposites of $TiO_2$ and Reduced Graphene Oxide as Efficient Photocatalysts for Hydrogen Evolution," J. Phys. Chem. C, 115, 10694-10701 (2011). https://doi.org/10.1021/jp2008804
  19. Lightcap, I. V., Kosel, T. H., and Kamat, P. V., "Anchoring Semiconductor and Metal Nanoparticles on a Two-dimensional Catalyst Mat. Storing and Shuttling Electrons with Reduced Graphene Oxide," Nano Lett., 10, 577-583 (2010). https://doi.org/10.1021/nl9035109
  20. Janaky, C., Rajeshwar, K., de Tacconi, N. R., Chanmanee, W., and Huda, M. N., "Tundsten-based Oxide Semiconductors for Solar Hydrogen Generation," Catal. Today, 199, 53-64 (2013). https://doi.org/10.1016/j.cattod.2012.07.020
  21. Li, X. Z., and Li, F. B., "The Enhancement of Photodegradation Efficiency Using Pt-$TiO_2$ Catalyst," Chemosphere, 48, 1103-1111 (2002). https://doi.org/10.1016/S0045-6535(02)00201-1
  22. Zoua, J.-J., , He, H., Cui, L., and Du, H.-Y., "Highly Efficient $Pt/TiO_2$ Photocatalyst for Hydrogen Generation Prepared by a Cold Plasma Method," Int. J. Hydrogen Energy, 32, 1762-1770 (2007). https://doi.org/10.1016/j.ijhydene.2006.11.030
  23. Li, X. Z., and Li, F. B., "Study of $Au/Au^{3+}-TiO_2$ Photocatalysts towards Visible Photooxidation for Water and Wastewater Treatment," Environ. Sci. Technol., 35, 2381-2387 (2001). https://doi.org/10.1021/es001752w
  24. Carneiro, J. O., Teixeira, V., Portinha, A., Dupak, L., Magalhaes, A., and Coutinho, "Study of the Deposition Parameters and Fe-dophant Effect in the Photocatalytic Activity of $TiO_2$ Films Prepared by dc Reactive Magnetron Sputtering," Vacuum, 78, 37-46 (2005). https://doi.org/10.1016/j.vacuum.2004.12.012
  25. Zhu, J., Zheng, W., He, B., Zhang, J., and Anpo, M., "Characterization of Fe-$TiO_2$ Photocatalysts Synthesized by Hydrothermal Method and Their Photocatalytic Reactivity for Degradation of XRG Dye Diluted in Water," J. Mol. Catal. A, 216, 35-43 (2004). https://doi.org/10.1016/j.molcata.2004.01.008
  26. Lee, M. S., Hong, S. S., and Mohseni, M., "Synthesis of Photocatalytic Nanosized $TiO_2$-Ag Particles with Sol-gel Method using Reduction Agent," J. Molec. Catal. A, 242, 135-140 (2005). https://doi.org/10.1016/j.molcata.2005.07.038
  27. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., and Taga, Y., "Visible-light Photocatalysis in Nitrogen-doped Titanium Dioxide," Science, 293, 269-271 (2001). https://doi.org/10.1126/science.1061051
  28. Wu, Z., Dong, F., Zhao, W., and Guo, S., "Visible Light Induced Electron Transfer Process over Nitrogen Doped $TiO_2$ Nanocrystals Prepared by Oxidation of Titanium Nitride," J. Hazard. Mater., 157, 57-63 (2008). https://doi.org/10.1016/j.jhazmat.2007.12.079
  29. Treschev, S. Y., Chou, P. W., Tseng, T. H., Wang, J. B., Perevedentseva, E. V., and Cheng, C. L., "Photoactivities of the Visible Light-activated Mixed-phase Carbon-containing Titanium Dioxide: The Effect of Carbon Incorporation," Appl. Catal. B, 79, 8-16 (2008). https://doi.org/10.1016/j.apcatb.2007.09.046
  30. Lettmann, C., Hildebrand, K., Kisch, H., Macyk, W., and Maier, W., "Visible Light Photodegradation of 4-chlorophenol with a Coke-containing Titanium Dioxide Photocatalyst," App. Catal. B, 32, 215-227 (2001). https://doi.org/10.1016/S0926-3373(01)00141-2
  31. Takeshita, K., Yamakata, A., Ishibashi, T., Onishu, H., Nishijima, K., and Ohno, T., "Transient IR Absorption Study of Charge Carriers Photogenerated in Sulfur-doped $TiO_2$," J. Photochem. Photobiol., 177, 269-275 (2006). https://doi.org/10.1016/j.jphotochem.2005.06.006
  32. Anpo, M., "Use of Visible Light. Second-generation Titanium Oxide Photocatalysts Prepared by the Application of an Advanced Metal Ion-implantation Method," Pure Appl. Chem., 72, 1787-1792 (2000). https://doi.org/10.1351/pac200072091787
  33. Yu, J., Zhou, M., Cheng, B., and Zhao, X, "Preparation, Characterization and Photocatalytic Activity of in situ N, S-codoped $TiO_2$ Powders," J. Mol. Catal. A, 246, 176-184 (2006). https://doi.org/10.1016/j.molcata.2005.10.034
  34. Sakthivel, S., Janczarea, M., and Kisch, H., "Visible Light Activity and Photoelectrochemical Properties of Nitrogen-doped $TiO_2$," J. Phys. Chem. B, 108, 19384-19387 (2004). https://doi.org/10.1021/jp046857q
  35. Pore, V., Heikkila, M., Ritala, M., Leskela, M., and Areva, S., "Atomic Layer Deposition of $TiO_2-N_x$ Thin Films for Photocatalytic Application," J. Photobiol. Photochem. A Chem., 177, 68-75 (2006). https://doi.org/10.1016/j.jphotochem.2005.05.013
  36. Wu, Z., Dong, F, Zhao, W., and Guo, S, "Visible Light Induced Electron Transfer Process over Nitrogen doped $TiO_2$ Nanocrystals Prepared by Oxidation of Titanium Nitride," J. Hazard. Mater., 157, 57-63 (2008). https://doi.org/10.1016/j.jhazmat.2007.12.079
  37. Irie, H., Watanabe, Y., and Hashimoto, K., "Carbon-doped Anatase $TiO_2$ Powders as a Visible-light Sensitive Photocatalyst," Chem. Lett., 32, 772-773 (2003). https://doi.org/10.1246/cl.2003.772
  38. Chen, H., Bai, S., Chang, C., and Chang, W. D., "Preparation of N-doped $TiO_2$ Photocatalyst by Atmospheric Pressure Plasma Process for VOCs Decomposition under UV and Visible Light Sources," J. Nanoparticle Res., 9, 365-375 (2007). https://doi.org/10.1007/s11051-006-9141-2
  39. Bard, A. J., "Photoelectrochemistry and Heterogeneous Photocatalysis at Semiconductors," J. Photochem., 10, 59-75 (1979). https://doi.org/10.1016/0047-2670(79)80037-4
  40. Kudo, A., and Kato, H., "Photocatalytic Activities of $Na_2W_4O_{13}$ with Layered Structure," Chem. Lett., 26, 421-422 (1997). https://doi.org/10.1246/cl.1997.421
  41. Kudo, A., and Hijii, S., "$H_2\;or\;O_2$ Evolution from Aqueous Solutions on Layered Oxide Photocatalysts Consisting of $Bi^{3+}\;with\;6s^2$ Configuration and $d^0$ Transition Metal Ions," Chem. Lett., 26, 1103-1104 (1999).
  42. Kato, H., Matsudo, N., and Kudo, A., "Photophysical and Photocatalytic Properties of Molybdates and Tungstates with a Scheelite Structure," Chem. Lett., 33, 1216-1217 (2004). https://doi.org/10.1246/cl.2004.1216
  43. Sasaki, Y., Iwase, A., Kato, H., and Kudo, A., "The Effect of Co-catalyst for Z-scheme Photocatalysis Systems with an $Fe^{3+}/Fe^{2+}$ Electron Mediator on Overall Water Splitting under Visible Light Irradiation," J. Catal., 259, 133-137 (2008). https://doi.org/10.1016/j.jcat.2008.07.017
  44. Lo, C.-C., Huang, C.-W., Liao, C.-H., and Wu, J. C. S., "Novel Twin Reactor for Separate Evolution of Hydrogen and Oxygen in Photocatalytic Water Splitting," Inter. J. Hydrogen Energy, 35, 1523-1529 (2010). https://doi.org/10.1016/j.ijhydene.2009.12.032
  45. Bae, S. W., Ji, S. M., Hong, S. J., Jang, J. S., and Lee, J. S., "Photocatalytic Overall Water Splitting with Dual-bed System under Visible Light Irradiation," Inter. J. Hydrogen Energy, 34, 3243-3249 (2009). https://doi.org/10.1016/j.ijhydene.2009.02.022
  46. Sasaki, Y., Nemoto, H., Saito, K., and Kudo, A., "Solar Water Splitting Using Powdered Photocatalysts Driven by Z-Schematic Interparticle Electron Transfer without an Electron Mediator," J. Phys. Chem. C, 113, 17536-17542 (2009). https://doi.org/10.1021/jp907128k
  47. Higashi, M., Abe, R., Ishikawa, A., Takata, T., Ohtani, B., and Domen, K., "Z-scheme Overall Water Splitting on Modified-TaON Photocatalysts under Visible Light (${\lambda}$ < 500 nm)," Chem. Lett., 37, 138-139 (2008). https://doi.org/10.1246/cl.2008.138
  48. Abe, R., Takata, T., Sugihara, H., and Domen, K., "Photocatalytic Overall Water Splitting under Visible Light by TaON and $WO_3$ with an $IO^{3-}/I^-$ Shuttle Redox Mediator," Chem. Commun., 30, 3829-3831 (2005).
  49. Djellal, L., Bellal, B., and Trari, M., "Hydrogen Production over $CuIn_3Se_5/WO_3$ Hetero-junction," Energy Procedia, 6, 46-54 (2011). https://doi.org/10.1016/j.egypro.2011.05.006
  50. Leisch, J. E., Bhattacharya, R. N., Teeter, G., and Turner, J. A., "Growth, Characterization and Studying of Sol-gel Derived CdS Nanoscrystalline Thin Films Incorporated in Polyethyleneglycol: Effects of Post-heat Treatment," Sol. Energy Mater. Sol. Cells, 81, 249-262 (2004). https://doi.org/10.1016/j.solmat.2003.11.006
  51. Panthani, M. G., Akhavan, V., Goodfellow, B., Schmidtke, J. P., Dunn, L., Dodabalapur, A., Barbara, P. F., and Korgel, B. A., "Synthesis of $CuInS_2,\;CuInSe_2,\;and\;Cu(In_xGa_{1-x})Se_2$ (CIGS) Nanocrystal "Inks" for Printable Photovoltaics," J. Am. Chem. Soc., 130, 16770-16777 (2008). https://doi.org/10.1021/ja805845q
  52. Wark, S. E., Hsia, C.-H., Luo, Z., and Son, D. H., "Surfactant Effect on the Formation of $CuInSe_2$ Nanowires in Solution Phase Synthesis," J. Mater. Chem., 21, 11618-11625 (2011). https://doi.org/10.1039/c1jm10401b
  53. Xu, J., Luan, C.-Y., Tang, Y.-B., Chen, X., Zapien, J. A., Zhang, W.-J., Kwong, H.-L., Meng, X.-M., Lee, S.-T., and Lee, C.-S., "Low-temperature Synthesis of $CuInSe_2$ Nanotube Array on Conducting Glass Substrates for Solar Cell Application," ACS Nano, 4, 6064-6070 (2010). https://doi.org/10.1021/nn101467p
  54. Paracchino, A., Laporte, V., Sivula, K., Gratzel, M., and Thimsen, E., "Highly Active Oxide Photocathode for Photoelectrochemical Water Reduction," Nat. Mater., 10, 456-461 (2011). https://doi.org/10.1038/nmat3017
  55. Chen, L., Shet, S., Tang, H., Wang, H., Deutsch, T., Yan, Y., Turner, J., and Al-Jassim, M., "Electrochemical Deposition of Copper Oxide Nanowires for Photoelectrochemical Applications," J. Mater. Chem., 20, 6962-6967 (2010). https://doi.org/10.1039/c0jm01228a
  56. Takanabe, K, Kamata, K., Wang, X., Antonietti, M., Kubota, J., and Domen, K., "Photocatalytic Hydrogen Evolution on Dye-sensitized Mesoporous Carbon Nitride Photocatalyst with Magnesium Phthalocyanine," Phys. Chem. Chem. Phys., 12, 13020-13025 (2010). https://doi.org/10.1039/c0cp00611d
  57. Zhang, Y., Mori, T., Niu, L., and Ye, J., "Non-covalent Doping of Graphitic Carbon Nitride Polymer with Graphene: Controlled Electronic Structure and Enhanced Optoelectronic Conversion," Energy Environ. Sci., 4, 4517-4521 (2011). https://doi.org/10.1039/c1ee01400e
  58. Xiang, Q., Yu, J., and Jaroniec, M., "Preparation and Enhanced Visible-light Photocatalytic $H_2$-Production Activity of Graphene/$C_3N_4$ Composites," J. Phys. Chem. C, 115, 7355-7363 (2011). https://doi.org/10.1021/jp200953k
  59. Kailasam, K., Epping, J. D., Thomas, A., Losse, S., and Junge, H., "Mesoporous Carbon Nitride-silica Composites by a Combined Sol-gel/Thermal Condensation Approach and Their Application as Photocatalysts," Energy Environ. Sci., 4, 4668-4674 (2011). https://doi.org/10.1039/c1ee02165f
  60. Zhang, J., Grzelczak, M., Hou, Y., Maeda, K., Domen, K., Fu, X., Antonietti, M., and Wang, X., "Photocatalytic Oxidation of Water by Polymeric Carbon Nitride Nanohybrids Made of Sustainable Elements," Chem. Sci., 3, 443-446 (2012). https://doi.org/10.1039/c1sc00644d
  61. Hu, J. S., Ren, L. L., Guo, Y. G., Liang, H. P., Cao, A. M., Wan, L. J., and Bai, C. L., "Mass Production and High Photocatalytic Activity of ZnS Nanoporous Nanoparticles," Angew. Chem. Int. Ed., 44, 1269-1273 (2005). https://doi.org/10.1002/anie.200462057
  62. Reber, J. F., and Meier, K. J., "Photochemical Production of Hydrogen with Zinc Sulfide Suspensions," J. Phys. Chem., 88, 5903-5913 (1984). https://doi.org/10.1021/j150668a032
  63. Kudo, A., and Sekizawa, M, "Photocatalytic $H_2$ Evolution under Visible Light Irradiation on $Zn_{1-x}Cu_xS$ Solid Solution," Catal. Lett., 58, 241-243 (1999). https://doi.org/10.1023/A:1019067025917
  64. Xing, C., Zhang, Y., Yan, W., and Guo, L., "Band Structure-controlled Solid Solution of $Cd_{1-x}Zn_xS$ Photocatalyst for Hydrogen Production by Water Splitting," Int. J. Hydrogen Energy, 31, 2018-2024 (2006). https://doi.org/10.1016/j.ijhydene.2006.02.003
  65. Zhang, K., Jing, D, Xing, C., and Guo, L., "Significantly Improved Photocatalytic Hydrogen Production Activity over Cd1-xZnxS Photocatalysts Prepared by a Novel Thermal Sulfuration Method," Int. J. Hydrogen Energy, 32, 4685-4691 (2007). https://doi.org/10.1016/j.ijhydene.2007.08.022
  66. Zhang, W., Zhong, Z., Wang, Y., and Xu, R., "Doped Solid Solution: $(Zn_{0.95}Cu_{0.05})_{1-x}Cd_xS$ Nanocrystals with High Activity for $H_2$ Evolution from Aqueous Solutions under Visible Light," J. Phys. Chem. C, 112, 17635-17642 (2008). https://doi.org/10.1021/jp8059008
  67. Arai, T., Senda, S.-I., Sato, Y., Takahashi, H., Shinoda, K., Jeyadevan, B., and Tohji, K., "Cu-Doped ZnS Hollow Particle with High Activity for Hydrogen Generation from Alkaline Sulfide Solution under Visible Light," Chem. Mater., 20, 1997-2000 (2008). https://doi.org/10.1021/cm071803p
  68. Shen, S., Zhao, L., Zhou, Z., and Guo, L., "Enhanced Photocatalytic Hydrogen Evolution over Cu-Doped $ZnIn_2S_4$ under Visible Light Irradiation," J. Phys. Chem. C, 112, 16148-16155 (2008). https://doi.org/10.1021/jp804525q
  69. Liu, G., Zhao, L., Ma, L., and Guo, L., "Photocatalytic $H_2$ Evolution under Visible Light Irradiation on a Novel $Cd_xCu_yZn_{1-x-y}S$ Catalyst," Catal. Commun., 9, 126-130 (2008). https://doi.org/10.1016/j.catcom.2007.05.036
  70. Zhang, W., and Xu, R., "Surface Engineered Active Photocatalysts without Noble Metals: $CuS-Zn_xCd_{1-x}S$ Nanospheres by One-step Synthesis," Int. J. Hydrogen Energy, 34, 8495-8503 (2009). https://doi.org/10.1016/j.ijhydene.2009.08.041
  71. Yu, J., Zhang, J., and Jaroniec, M., "Preparation and Enhanced Visible-light Photocatalytic H2-production Activity of CdS Quantum Dots-sensitized $Zn_{1-x}Cd_xS$ Solid Solution," Green Chem., 12, 1611-1614 (2010). https://doi.org/10.1039/c0gc00236d
  72. Zhang, J., Jiaguo, Y., Zhang, Y., Li, Q., and Gong, J. R., "Visible Light Photocatalytic H2-production Activity of CuS/ZnS Porous Nanosheets Based on Photoinduced Interfacial Charge Transfer," Nano Lett., 11, 4774-4779 (2011). https://doi.org/10.1021/nl202587b
  73. Thimsen, E., Le Formal, F., Gratzel, M., and Warren, S. C., "Influence of Plasmonic Au Nanoparticles on the Photoactivity of $Fe_2O_3$ Electrodes for Water Splitting," Nano Lett., 11, 35-43 (2010).

Cited by

  1. VOCs Removal by Oxidation/Reduction Reaction of Cu-Doped Photocatalyst vol.7, pp.6, 2016, https://doi.org/10.18178/ijcea.2016.7.6.605
  2. Fabrication and Photocatalytic Activity of TiO2Nanofibers Dispered with Silica Nanoparticles vol.52, pp.5, 2014, https://doi.org/10.9713/kcer.2014.52.5.667
  3. Surface Properties of Mercaptopyruvic-acid Layer Formed on Gold Surfaces Interacting with ZrO2 vol.20, pp.2, 2014, https://doi.org/10.7464/ksct.2014.20.2.130