DOI QR코드

DOI QR Code

Computational Hemodynamics in the Intracranial Aneurysm Model

뇌동맥류 모델에 대한 혈류역학 해석

  • Seo, Taewon (Dept. of Mechanical and Automotive Engineering, Andong Nat'l Univ.) ;
  • Byun, Jun Soo (Dept. of Radiology, Chung Ang Univ. Hospital)
  • 서태원 (안동대학교 기계자동차공학과) ;
  • 변준수 (중앙대학교 병원영상의학과)
  • Received : 2013.05.09
  • Accepted : 2013.08.21
  • Published : 2013.10.01

Abstract

The intracranial aneurysm model is extracted based on the Computed Tomography (CT) scan images. Computational fluid dynamics simulations were conducted under both steady and realistic flow conditions in ANSYS-FLUENT. The minimum wall shear stress in the intracranial aneurysm tended to occur in the aneurysmal region. The magnitude of wall shear stress along inner wall of the curvature in the right M1 segment of middle cerebral artery is approximately 20 times higher than that along both the proximal and distal walls. However, the magnitudes of the wall shear stress at the aneurysm region were considerably low. The blood flow has the complex distribution in the aneurysmal region during the systolic period. Complex helical flow patterns are observed inside the aneurysm. Through an analysis of the hemodynamic characteristics, one may predict the rupture of the cerebral aneurysms.

뇌동맥류모델은 CT 영상을 기반으로 추출하여, ANSYS-FLUENT를 사용해 전산 유체유동해석을 수행하였다. 본 연구를 통해 뇌동맥류에서 최소 벽전단응력은 동맥류가 발생한 영역에서 일어나는 것을 알 수 있다. 또한 뇌동맥류 모델에서 우측중뇌동맥 안쪽벽면에 작용하는 벽전단응력의 크기는 동맥류 전부와 후부의 벽면에 작용하는 벽전단응력의 크기에 비해 20 배 더 크게 발생하는 것을 알 수 있다. 그러나 동맥류 영역에서의 전단응력의 크기는 매우 작게 나타났다. 혈관 수축이 일어나는 동안 동맥류의 영역에서 매우 복잡한 이차유동이 발생하는 것을 볼 수 있다. 동맥류 내부에서의 혈류유동은 나선형 유동형태를 보이며, 본 연구의 혈류역학적 특성 분석을 통해 뇌동맥류의 파열을 예견할 수 있을 것으로 판단한다.

Keywords

References

  1. White, P. M. and Wardlaw, J. M., 2003, "Unruptured Intracranial Aneurysm," JNeuroradiol, Vol. 30, pp. 336-350.
  2. Weir, B., Amidei, C., Kongable, G., Findlay, J. M., Kassell, N. F., Kelly, J., Dai, L. and Karrison, T. G., 2003, "The Aspect Ratio (Dome/neck) of Ruptured and Unruptured Aneurysm," J Neurosurg, Vol. 99, pp. 447-451. https://doi.org/10.3171/jns.2003.99.3.0447
  3. Sforza, D. Putman, C. M. and Cebral, J. R., 2009, "Hemodynamics of Cerebral Aneurysm," Annu Rev Fluid Mech, Vol. 41, pp. 91-107. https://doi.org/10.1146/annurev.fluid.40.111406.102126
  4. Nixon, A. M., Gunel, M. and Sumpio, B. E., 2011, "The Critical Role of Hemodynamics in the Development of Cerebral Vascular Disease," JNeurosurg, Vol. 112, pp. 240-253.
  5. Cebral, J. R., Mut, F., Weir, J. and Putman, C. M., 2011, "Association of hemodynamic Characteristics and Cerebral Aneurysm Rupture," Am J Neuroradiol, Vol. 32, pp. 264-270. https://doi.org/10.3174/ajnr.A2274
  6. Dardik, A., Chen, L., Frattini, J., Asada, H. and Aziz F, 2005, "Differential Effects of Orbital and Laminar Shear Stress on Endothelial Cells," J VascSurg, Vol. 41, pp. 869-880.
  7. Ramachandran, M., 2012, "On the Role of Intracranial Aneurysm Morphology in Stable Versus Unstable Lesions," PhD Thesis, University of Iowa
  8. Valencia, A. A., Guzman, A. M., Finol, E. A. and Amon, C. H., 2006, "Blood Flow Dynamics in Saccular Aneurysm Models of the Basilar Artery," J. BioMech. Eng., Vol. 128, pp. 516-526. https://doi.org/10.1115/1.2205377
  9. Juvela, S., Porras, M., and Poussa, K., 2000, "Natural History of Unruptured Aneurysms: Probability of and Ris Factors for Aneurysm Rupture,"J. Neurosurg., Vol. 93, pp. 379-387. https://doi.org/10.3171/jns.2000.93.3.0379
  10. Yoichi, M., Fujimaro, I., Yasuyuki, U., Hiroshi, T., Hidenori, S., Satoshi, M., and Shinichi, S., 2012, "Low Wall Shear Stress is Independently Associated with the Rupture Status of Middle Cerebral Artery Aneurysms," Stroke, Vol. 44, pp. 519-521.
  11. Cebral, J. R., Mut, F., Weir, J. and Putman, C. M., 2011, "Quantitative Characterization of the Hemodynamic Environment in Ruptured and Unruptured Brain Aneurysms," Am J Neuroradiol, Vol. 32, pp. 145-151. https://doi.org/10.3174/ajnr.A2641
  12. Xiang, J., Natarajan, S.K., Tremmel, M., Ma, D., Mocco, J., Hopkins, L.N., Siddiqui, A. H., Levy, E.I. and Meng, H., 2011, "Hemodynamic-Morphologi Discriminants for Intracranial Aneurysm Rupture," Stroke, Vol. 42, pp. 144-152. https://doi.org/10.1161/STROKEAHA.110.592923
  13. Kawaguchi, T., Nishimura, S., Kanamori, M., Takazawa, H., Omodaka, S., Sato, K., Maeda, N., Yokoyama, Y., Midorikawa, H., Sasaki, T., Nishijima, M., 2012, "Distinctive Flow Pattern of Wall Shear Stress and Oscillatory Shear Index: Similarity and Dissimilarity in Ruptured and Unruptured Cerebral Aneurysm Blebs," J. Neurosur, Vol. 117, pp. 774-780. https://doi.org/10.3171/2012.7.JNS111991

Cited by

  1. The Numerical Study of the Hemodynamic Characteristics in the Patient-Specific Intracranial Aneurysms before and after Surgery vol.2016, pp.1748-6718, 2016, https://doi.org/10.1155/2016/4384508