References
- Ding, Z. and Granger, C. W. J. (1996). Modeling volatility persistence of speculative returns: A new approach, Journal of Econometrics, 73, 185-215. https://doi.org/10.1016/0304-4076(95)01737-2
- Ding, Z., Granger, C. W. J. and Engle, R. F. (1993). A long memory property of stock market returns and a new model, Journal of Empirical Finance, 1, 83-106. https://doi.org/10.1016/0927-5398(93)90006-D
- Francq, C. and Zakoian, J. (2004). Maximum likelihood estimation of pure GARCH and ARMAGARCH processes, Bernoulli, 10, 605-637. https://doi.org/10.3150/bj/1093265632
- Goncalves, E., Leite, J. and Mendes-Lopez, N. (2009). A mathematical approach to detect the Taylor property in TARCH processes, IEEE Signal Processing Letters, 79, 602-610.
- Ha, J. and Lee, T. (2011). NM-QELE for ARMA-GARCH Models with non-Gaussian innovations, Statistics and Probability Letters, 81, 694-703. https://doi.org/10.1016/j.spl.2011.02.004
- Haas, M. (2009). Persistence in volatility, conditional kurtosis, and the Taylor property in absolute value GARCH processes, IEEE Signal Processing Letters, 79, 1674-1683.
- Haas, M., Mittnik, S. and Paolella, M. S. (2004). Mixed normal conditional heteroskedasticity, Journal of Financial Econometrics, 2, 211-250. https://doi.org/10.1093/jjfinec/nbh009
- He, C. and Terasvirta, T. (1999). Properties of moments of a family of GARCH processes, Journal of Econometrics, 92, 173-192. https://doi.org/10.1016/S0304-4076(98)00089-X
- Lee, S. and Lee, T. (2012). Inference for Box-Cox transformed threshold GARCH models with nuisance parameters, Scandinavian Journal of Statistics, 39, 568-589. https://doi.org/10.1111/j.1467-9469.2012.00805.x
- Lee, S. and Noh, J. (2013). An empirical study on explosive volatility test with possibly nonstationary GARCH(1, 1) models, Communications for Statistical Applications and Methods, 20, 207-215. https://doi.org/10.5351/CSAM.2013.20.3.207
- Lee, S., Park, S. and Lee, T. (2009). A note on the Jarque-Bera Normality Test for GARCH Innovations, Journal of the Korean Statistical Society, 39, 93-102. https://doi.org/10.1016/j.jkss.2009.04.005
- Lee, T. and Lee, S. (2009). Normal mixture quasi-maximum Likelihood estimator for GARCH Models, Scandinavian Journal of Statistics, 36, 157-170.
- Leroux, B. G. (1992). Consistent estimation of a mixing distribution, The Annals of Statistics, 20, 1350-1360. https://doi.org/10.1214/aos/1176348772
- McLachlan, G. and Peel, D. (2000). Finite Mixture Models, Wiley, New York.
- Pan, J., Wang, H. and Tong, H. (2008). Estimation and tests for power-transformed and threshold GARCH models, Journal of Econometrics, 142, 352-378. https://doi.org/10.1016/j.jeconom.2007.06.004
- Taylor, S. J. (1988). Modelling Financial Time Series, John Wiley and Sons, Chichester.