References
- Abouammoh, A. M. and Alshingiti, A. M. (2009). Reliability estimation of generalized inverted exponential distribution, Journal of Statistical Computation and Simulation, 79, 1301-1315. https://doi.org/10.1080/00949650802261095
- Berger, J. O. and Bernardo, J. M. (1989). Estimating a product of means: Bayesian analysis with reference priors, Journal of the American Statistical Association, 84, 200-207. https://doi.org/10.1080/01621459.1989.10478756
- Berger, J. O. and Bernardo, J. M. (1992). On the development of reference priors (with discussion), In Bayesian Statistics IV, edited by J. M. Bernardo, et al., Oxford University Press, Oxford, 35-60.
- Bernardo, J. M. (1979). Reference posterior distributions for Bayesian inference (with discussion), Journal of Royal Statistical Society B, 41, 113-147.
- Bjerkedal, T. (1960). Acquisition of resistance in guinea pigs infected with different doses of virulent tubercle bacilli, American Journal of Epidemiology, 72, 130-148. https://doi.org/10.1093/oxfordjournals.aje.a120129
- Cox, D. R. and Reid, N. (1987). Orthogonal parameters and approximate conditional inference (with discussion), Journal of Royal Statistical Society B, 49, 1-39.
- Datta, G. S. and Ghosh, M. (1995). Some remarks on noninformative priors, Journal of the American Statistical Association, 90, 1357-1363. https://doi.org/10.1080/01621459.1995.10476640
- Datta, G. S. and Ghosh, M. (1996). On the invariance of noninformative priors, The Annals of Statistics, 24, 141-159. https://doi.org/10.1214/aos/1033066203
- Datta, G. S., Ghosh, M. and Mukerjee, R. (2000). Some new results on probability matching priors, Calcutta Statistical Association Bulletin, 50, 179-192.
- Dey, S. (2007). Inverted exponential distribution as a life time distribution model from a Bayesian viewpoint, Data Science Journal, 6, 107-113. https://doi.org/10.2481/dsj.6.107
- DiCiccio, T. J. and Stern, S. E. (1994). Frequentist and Bayesian Bartlett correction of test statistics based on adjusted profile likelihood, Journal of Royal Statistical Society B, 56, 397-408.
- Ghosh, J. K. and Mukerjee, R. (1992). Noninformative priors (with discussion), In Bayesian Statistics IV, edited by J. M. Bernardo, et al., Oxford University Press, Oxford, 195-210.
- Ghosh, J. K. and Mukerjee, R. (1995). Frequentist validity of highest posterior density regions in the presence of nuisance parameters, Statistics & Decisions, 13, 131-139.
- Kang, S. G. (2011). Noninformative priors for the common mean in log-normal distributions, Journal of the Korean Data & Information Science Society, 22, 1241-1250.
- Kang, S. G., Kim, D. H. and Lee, W. D. (2012). Noninformative priors for the ratio of the scale parameters in the half logistic distributions, Journal of the Korean Data & Information Science Society, 23, 833-841. https://doi.org/10.7465/jkdi.2012.23.4.833
- Killer, A. Z. and Kamath, A. R. (1982). Reliability analysis of CNC machine tools, Reliability Engineering, 3, 449-473. https://doi.org/10.1016/0143-8174(82)90036-1
- Lin, C., Duran, B. S. and Lewis, T. O. (1989). Inverted gamma as a life distribution, Microelectronics Reliability, 29, 619-626. https://doi.org/10.1016/0026-2714(89)90352-1
- Mukerjee, R. and Dey, D. K. (1993). Frequentist validity of posterior quantiles in the presence of a nuisance parameter: Higher order asymptotics, Biometrika, 80, 499-505. https://doi.org/10.1093/biomet/80.3.499
- Mukerjee, R. and Ghosh, M. (1997). Second order probability matching priors, Biometrika, 84, 970-975. https://doi.org/10.1093/biomet/84.4.970
- Mukerjee, R. and Reid, N. (1999). On a property of probability matching priors: Matching the alternative coverage probabilities, Biometrika, 86, 333-340. https://doi.org/10.1093/biomet/86.2.333
- Singh, S. K., Singh, U. and Kumar, D. (2012). Bayes estimators of the reliability function and parameter of inverted exponential distribution using informative and non-informative priors, Journal of Statistical Computation and Simulation, Under publication.
- Stein, C. (1985). On the coverage probability of confidence sets based on a prior distribution, Sequential Methods in Statistics, Banach Center Publications, 16, 485-514.
- Tibshirani, R. (1989). Noninformative priors for one parameter of many, Biometrika, 76, 604-608. https://doi.org/10.1093/biomet/76.3.604
- Welch, B. L. and Peers, H. W. (1963). On formulae for confidence points based on integrals of weighted likelihood, Journal of Royal Statistical Society B, 25, 318-329.