DOI QR코드

DOI QR Code

Optical and Electrical Properties of Fluorine-Doped Tin Oxide Prepared by Chemical Vapor Deposition at Low Temperature

저온 증착된 불소도핑 주석 산화 박막의 광학적·전기적 특성

  • Park, Ji Hun (Display Team, Display Group, IM Co., Ltd.) ;
  • Jeon, Bup Ju (Department of Energy Resources, Hanbuk University)
  • 박지훈 ((주)아이엠 디스플레이사업부) ;
  • 전법주 (한북대학교 에너지자원학과)
  • Received : 2013.08.22
  • Accepted : 2013.09.09
  • Published : 2013.09.27

Abstract

The electrical and optical properties of fluorine-doped tin oxide films grown on polyethylene terephthalate film with a hardness of 3 using electron cyclotron resonance plasma with linear microwave of 2.45 GHz of high ionization energy were investigated. Fluorine-doped tin oxide films with a magnetic field of 875 Gauss and the highest resistance uniformity were obtained. In particular, the magnetic field could be controlled by varying the distribution in electron cyclotron deposition positions. The films were deposited at various gas flow rates of hydrogen and carrier gas of an organometallic source. The surface morphology, electrical resistivity, transmittance, and color in the visible range of the deposited film were examined using SEM, a four-point probe instrument, and a spectrophotometer. The electromagnetic field for electron cyclotron resonance condition was uniformly formed in at a position 16 cm from the center along the Z-axis. The plasma spatial distribution of magnetic current on the roll substrate surface in the film was considerably affected by the electron cyclotron systems. The relative resistance uniformity of electrical properties was obtained in film prepared with a magnetic field in the current range of 180~200A. SEM images showing the surface morphologies of a film deposited on PET with a width of 50 cm revealed that the grains were uniformly distributed with sizes in the range of 2~7 nm. In our experimental range, the electrical resistivity of film was able to observe from $1.0{\times}10^{-2}$ to $1.0{\times}10^{-1}{\Omega}cm$ where optical transmittance at 550 nm was 87~89 %. These properties were depended on the flow rate of the gas, hydrogen and carrier gas of the organometallic source, respectively.

Keywords

References

  1. Y. S. Kim, Surface and Coating Technology, 173, 299 (2003). https://doi.org/10.1016/S0257-8972(03)00717-5
  2. T. Minami, Thin Solid Film, 290-291, 1 (1996). https://doi.org/10.1016/S0040-6090(96)09094-3
  3. T. Minani, Thin Solid Film, 516(7), 1314 (2008). https://doi.org/10.1016/j.tsf.2007.03.082
  4. E. Elangovan, K. Ramamurthi, Applied Surface Science. 249, 183 (2005). https://doi.org/10.1016/j.apsusc.2004.11.074
  5. Y. H. Kook, D. J. Byun, B. J. Jeon and J. K. Lee, Studies in surface science and catalysis, 159, 385 (2006). https://doi.org/10.1016/S0167-2991(06)81614-9
  6. J. H. Park, D. Byun, B. J. Jeon, J. K. Lee, Journal of materials science, 43, 3417 (2008). https://doi.org/10.1007/s10853-008-2463-y
  7. X. Huang, Z. Yu, S. Huang, Q. Zhang,D. Li, Y. Luo. Mater Lett., 64, 1701 (2010). https://doi.org/10.1016/j.matlet.2010.05.001
  8. S. F. Tseng, W. T. Hsiao, D. Chiang, K. C. Huang, C. P. Chou. Appl Surf Sci., 257, 7024 (2011). https://doi.org/10.1016/j.apsusc.2011.03.052
  9. Yang TL, Zhang DH, Ma J, Ma HL, Chen Y. Thin Solid Films, 326, 60 (1998). https://doi.org/10.1016/S0040-6090(98)00763-9
  10. Y. Huan, F. Dongchuan, J. Ming , D. Jun, Z. Fei, Z. Xiaoyan, and B. Udo, Thin Solid Films 531, 519 (2013). https://doi.org/10.1016/j.tsf.2013.01.014
  11. C. Sima, C. Grigoriu, S. Antohe, Thin Solid Films 519, 595 (2010). https://doi.org/10.1016/j.tsf.2010.07.002
  12. Q. Qiao, J. Beck, R. Lumpkin, J. Pretko, J.T. McLeskey, Sol. Energy Mater. Sol. Cells, 90, 1034 (2006). https://doi.org/10.1016/j.solmat.2005.05.020
  13. Z. Tachan, S. Ruhle, A. Zaban, Sol Energy Mater Sol Cells. 94, 317 (2010). https://doi.org/10.1016/j.solmat.2009.10.006
  14. T. J. Coutts and W. P. Mulligan, J. Vac. Sci. Technol. A18(6), 2978 (2000).
  15. E. Elangovan, K. Ramamurthi, Thin Solid Films 476, 231 (2005). https://doi.org/10.1016/j.tsf.2004.09.022
  16. K. S. Shamala, L. C. S. Murthy, and K. Narasimha Rao, Bull. Mater.Sci. 27(3), 95 (2004).
  17. Z. M. Jarzebski, J. P. Marton, J. Electrochem. Soc. 123, 299c (1976). https://doi.org/10.1149/1.2133090
  18. K. Y. Rajpure, M. N. Kusumade, M. N. Neumann-Spallart, C. H. Bhosale, Mater. Chem. Phys. 64, 184 (2000). https://doi.org/10.1016/S0254-0584(99)00256-4
  19. J. Kane, H. P. Schweizer, J. Electrochem. Soc., 123, 270 (1976). https://doi.org/10.1149/1.2132802
  20. T. N. Blanton, M. Lelental, Mater. Res. Bull., 29, 537 (1994). https://doi.org/10.1016/0025-5408(94)90043-4
  21. B. J. Jeon, S. W. Lee, J. K. Lee, Surface &coatings technology, 202, 1839 (2008). https://doi.org/10.1016/j.surfcoat.2007.08.015
  22. B. J. Jeon and J. K. Lee, Kor. J. Institute of Military Science and Technology, 7(1), 34 (2004).