DOI QR코드

DOI QR Code

Study on Characteristic of Self-preservation Effect of CO2 Hydrate according to Temperature, Particle Diameter and Shape

온도, 직경, 형태에 따른 CO2 하이드레이트의 자기보존효과 특성 연구

  • Kim, Yeon-Soo (Greenhouse Gas Department, Korea Institute of Energy Research) ;
  • Kang, Seong-Pil (Greenhouse Gas Department, Korea Institute of Energy Research) ;
  • Park, So-Jin (Department of Chemical Engineering, Chungnam National University)
  • 김연수 (한국에너지기술연구원 온실가스연구단) ;
  • 강성필 (한국에너지기술연구원 온실가스연구단) ;
  • 박소진 (충남대학교 화학공학과)
  • Received : 2013.04.03
  • Accepted : 2013.06.30
  • Published : 2013.10.01

Abstract

Gas hydrate studies are attracting attention of many researchers as an innovative, economic and environmentally friendly technology when it is applied to $CO_2$ capture, transport, and storage. In this study, we investigated whether $CO_2$ hydrate shows the self-preservation effect or not, that is the key property for developing a novel $CO_2$ transport/storage method. Especially the degree of self-preservation effect for $CO_2$ hydrate was studied according to the particle size of $CO_2$ hydrate samples. We prepared three kinds of $CO_2$ hydrate samples varying their particle diameter as millimeter, micron and nano size and measured their change of weight at $-15{\sim}-30^{\circ}C$ under atmospheric pressure during 3 weeks. According to our experimental result, the lower temperature, larger particle size, and compact structure for higher density are the better conditions for obtaining self-preservation effect.

$CO_2$를 포집, 수송, 저장하는 기술에 있어서 경제적이고 친환경적 혁신기술로 주목받고 있는 가스 하이드레이트 이용기술의 연구가 활발히 진행되고 있다. 본 연구에서는 가스 하이드레이트를 이용한 $CO_2$ 수송/저장기술의 핵심이 되는 자기보존효과(self-preservation effect)가 발현하는지를 확인하고자 하였다. 특히 $CO_2$ 하이드레이트 입자의 직경에 대한 효과 정도를 실험적으로 살펴보았다. 밀리미터, 마이크론, 그리고 나노 크기의 각각 다른 직경을 갖는 세 종류 $CO_2$ 하이드레이트 샘플을 준비하였고, 3주간 $-15{\sim}-30^{\circ}C$의 온도 및 대기압 조건에서 각각의 샘플 무게 변화를 측정하였다. 실험연구 결과 $CO_2$ 하이드레이트의 자기보존효과를 최대한 얻기 위해서는 온도는 가능한 낮아야 하며, 샘플의 직경 크기가 클수록 좋고, 샘플은 치밀한 구조로 조직되어 높은 밀도를 갖는 방식으로 제조하는 것이 매우 향상된 결과를 얻을 수 있음을 확인하였다.

Keywords

References

  1. Lee, H., Lee, C. S. and Kang, J. M., "Carbon Dioxide Ocean Sequestration Using Gas Hydrate," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 41(2), 135-146(2003).
  2. Gibbins, J. and Chalmers, H., "Carbon Capture and Storage," Energy Policy, 36(12), 4317-4322(2008). https://doi.org/10.1016/j.enpol.2008.09.058
  3. Hendriks, C. A. and Blok, K., "Carbon Dioxide Recovery Using a Dual Gas Turbine IGCC Plant," Energy Conv. Manag., 33(5-8), 387-396(1992). https://doi.org/10.1016/0196-8904(92)90035-U
  4. Anderson, S. and Newell, R., "Prospects for Carbon Capture and Storage Technologies," Ann. Rev. Environ. Res., 29, 109-142(2004). https://doi.org/10.1146/annurev.energy.29.082703.145619
  5. Farla, J. C. M., Hendriks, C. A. and Blok, K., "Carbon Dioxide Recovery from Industrial Processes," Energy Conv. Manag., 29(6-9), 827-830(1995).
  6. Sloan, E. D. and Koh, C. A., "Clathrate Hydrates of Natural Gases," 3rd Ed., CRC press, Boca Raton, 2007, pp. 1-111.
  7. Makogon, Y. F., "Hydrates of Hydrocarbons," PennWell Books, Tulas, 1997, pp. 1-114.
  8. Lee, H., Lee, J. W., Kim, D. Y., Park, J. S., Seo, Y. T., Zeng, H., Moudrakovski, I. L., Ratcliffe, C. I. and Ripmeester, J. A., "Tuning Clathrate Hydrates for Hydrogen Storage," Nature, 434(7034), 743-746(2005). https://doi.org/10.1038/nature03457
  9. Kim, D. Y., Park, Y. and Lee, H., "Tuning Clathrate Hydrates: Application to Hydrogen Storage," Catal. Today, 120(3-4), 257-261(2007). https://doi.org/10.1016/j.cattod.2006.09.001
  10. Ogata, K., Hashimoto, S., Sugahara, T., Moritoki, M., Sato, H. and Ohgaki, K., "Storage Capacity of Hydrogen in Tetrahydrofuran Hydrate," Chem. Eng. Sci., 63(23), 5714-5718(2008). https://doi.org/10.1016/j.ces.2008.08.018
  11. Gudmunsson, J. S., Parlaktuna, M. and Khokhar, A. A., "Storing Natural Gas as Frozen Hydrate," SPE Production & Facilities, 9(1), 69-73(1994). https://doi.org/10.2118/24924-PA
  12. Falenty, A. and Kuhs, W. F., "Self-Preservation of $CO_2$ Gas Hydrates-Surface Microstructure and Ice Perfection," J. Phys. Chem., 113(49), 15975-15988(2009). https://doi.org/10.1021/jp906859a
  13. Gudmundsson, J. S., Parlaktuna, M., Levik, O. I. and Andersson, V., "Laboratory for Continuous Production of Natural Gas Hydrates," Ann. NY Acad. Sci., 912, 851(2000).
  14. Kuhs, W. F., Genov, G., Satykova, D. K. and Hansen, T., "Ice Perfection and Onset of Anamalous Preservation of Gas Hydrates," Phys. Chem. Chem. Phys., 6(21), 4917-4920(2004). https://doi.org/10.1039/b412866d
  15. Sun, D., Shimono, Y., Takeya, S. and Ohmura, R., "Preservation of Carbon Dioxide Clathrate Hydrate at Temperatures below the Water Freezing Point under Atmospheric Pressure," Ind. Eng. Chem. Res., 50(24), 13854-13858(2011). https://doi.org/10.1021/ie2017724
  16. Lee, J.-H. and Kang, S.-P., "Study on Characteristic of $CO_2$ Hydrate Formation Using Micro-sized Ice," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 50(4), 690-695(2012). https://doi.org/10.9713/kcer.2012.50.4.690
  17. Kang, S.-P., Lee, J.-W. and Ryu, H.-J., "Phase Behavior of Methane and Carbon Dioxide Hydrates in Meso- and Macro-sized Porous Media," Fluid Phase Equilib., 274(1-2), 68-72(2008). https://doi.org/10.1016/j.fluid.2008.09.003
  18. Tanaka, S., Maruyama, F. and Takano, O., "Experimental Study on $CO_2$ Storage and Sequestration in Form of Hydrate Pellets," Int. Confer. on Gas Hydrate, Trondheim, Norway(2005).