Abstract
With high social demands for the diverse utilizations of forest lands, the illegal forest land use changes have increased. We studied change detection technique to detect changes in forest land use using an object-oriented segmentation of RED bands differencing in multi-temporal aerial photographs. The new object-oriented segmentation method consists of the 5 steps, "Image Composite - Segmentation - Reshaping - Noise Remover - Change Detection". The method enabled extraction of deforested objects by selecting a suitable threshold to determine whether the objects was divided or merged, based on the relations between the objects, spectral characteristics and contextual information from multi-temporal aerial photographs. The results found that the object-oriented segmentation method detected 12% of changes in forest land use, with 96% of the average detection accuracy compared by visual interpretation. Therefore this research showed that the spatial data by the object-oriented segmentation method can be complementary to the one by a visual interpretation method, and proved the possibility of automatically detecting and extracting changes in forest land use from multi-temporal aerial photographs.
사회 변화에 따라 산지이용 수요가 증가하고 다양화되면서 산림을 훼손하고, 타 용도로 활용하는 산지의 면적이 증가하고 있다. 이에 최근 훼손된 산지의 면적을 효과적으로 확인하기 위하여 두 시기의 항공사진을 활용한 훼손 산지 변화탐지 기법을 연구하였다. 본 연구에서 개발한 기법은 객체기반 변화탐지 형식으로, 영상 혼합 - 객체 분할 - 객체 병합 - 노이즈 제거 - 훼손지 추출의 5가지 단계로 진행되었다. 훼손 산지에 적합한 객체생성 수준을 선정하고, 객체를 분할 병합하는 과정을 통해 객체 간의 관계와 각 객체가 지닌 분광 특성 및 정황적(Contextual) 정보를 활용하여 신규 훼손 산지를 추출하였다. 시범 영역 테스트 결과, 전체 판독범위의 12%에 해당하는 훼손 산지를 추출하였고 육안판독 훼손산지의 평균 96%를 포함함으로써, 육안판독 전 후의 보완 자료로서의 가치와 자동추출의 가능성을 확인하였다.