DOI QR코드

DOI QR Code

Bactericidal Efficacy of Fumagari OPP®, Fumigant Against Escherichia coli and Salmonella typhimurium

훈증소독제, Fumagari OPP®의 Escherichia coli와 Salmonella typhimurium에 대한 살균효과

  • Park, Eun-Kee (Department of Medical Humanities and Social Medicine, College of Medicine, Kosin University) ;
  • Kim, Yongpal (Elkahmco Bio Co., Ltd.) ;
  • Yu, Eun-Ah (Tongyeong National Quarantine Station, Ministry of Health & Welfare) ;
  • Yoo, Chang-Yeol (Department of Computer Information, Gyeongnam Provincial Namhae College) ;
  • Choi, Hyunju (Elderly Life Redesign Institute, Department of Biomedical Laboratory Science, Inje University) ;
  • Kim, Suk (Research Institute of Life Sciences, College of Veterinary Medicine, Gyeongsang National University) ;
  • Lee, Hu-Jang (Research Institute of Life Sciences, College of Veterinary Medicine, Gyeongsang National University)
  • 박은기 (고신대학교 의과대학) ;
  • 김용팔 (엘캄코 바이오(주)) ;
  • 유은아 (보건복지부 통영검역소) ;
  • 유창열 (경남도립남해대학 인터넷정보학과) ;
  • 최현주 (인제대학교 임상병리학과) ;
  • 김석 (경상대학교 수의과대학 생명과학연구원) ;
  • 이후장 (경상대학교 수의과대학 생명과학연구원)
  • Received : 2013.07.03
  • Accepted : 2013.07.23
  • Published : 2013.09.30

Abstract

This test was performed to evaluate the bactericidal efficacy of Fumagari OPP$^{(R)}$, fumigation disinfectant, containing 20% ortho-phenylphenol against Escherichia coli (E. coli) and Salmonella typhimurium (S. typhimurium). In preliminary tests, both E. coli and S. typhimurium working culture suspension number (N value) was $4.0{\times}10^8$ CFU/mL. And all of the colony numbers on the carriers exposed the fumigant (n1, n2, n3) were higher than 0.5N1 (the number of bacterial test suspentions by pour plate method), 0.5N2 (the number of bacterial test suspentions by filter membrane method) and 0.5N1, respectively. In addition, the mean number of bacteria recovered on the control-carriers (T value) was $3.4{\times}10^6$ CFU/mL. In the bactericidal effect of the fumigant, the reduction number of S. typhimurium and E. coli (d value) was 5.26 and 5.64 logCFU/mL, respectively. According to the French standard for the fumigant, the d value for the effective bactericidal fumigant should be over than 5 logCFU/mL. With the results of this study, Fumagari OPP$^{(R)}$ has an effective bactericidal activity, then the fumigant can be applied to disinfect food materials and kitchen appliances contaminated with pathogenic bacteria.

본 연구는 E. coli와 S. typhimurium을 대상으로 orthophenylphenol 20%를 함유한 훈증소독제, Fumagari OPP$^{(R)}$의 살균효과를 평가하기 위해 수행되었다. 예비 시험에서, E. coli와 S. typhimurium의 현탁액 균수는 모두 $4.0{\times}10^8CFU/mL$이었으며, 모든 훈증소독제에 노출시킨 담체의 균수는 모두 평판배지법과 여과법으로 배양한 시험균주 현탁액의 균수의 50%보다 많았다. 또한, 대조 담체로부터 회복된 E. coli와 S. typhimurium 균수는 모두 $3.4{\times}10^6CFU/mL$이었다. 훈증소독제의 살균효과 시험에서는, 훈증소독제를 처리한 담체의 E. coli와 S. typhimurium의 감소 균수는 각각 5.64와 5.26 logCFU/mL로 나타났다. 이상의 결과로부터, 훈증소독제, Fumagari OPP$^{(R)}$은 E. coli와 S. typhimurium에 대해 효과적인 살균력을 갖는 것으로 확인되었으며, 병원성 세균에 오염된 식품재료 및 주방용품의 소독에 적용할 수 있을 것으로 사료된다.

Keywords

References

  1. Ryu, S.H., Lee, J.H., Park, S.H., Song, M.O., Park, S.H., Jung, H.W., Park, G.Y., Choi, S.M., Kim, M.S., Chae, Y.Z., Park, S.G. and Lee, Y.K.: Antimicrobial resistance profiles among Escherichia coli strains isolated from commercial and cooked foods. Int. J. Food Microbiol. 159, 263-266 (2012). https://doi.org/10.1016/j.ijfoodmicro.2012.09.001
  2. Zhao, T., Doyle, M.P., Zhao, P., Blake, P. and Wu, F.M.: Chlorine inactivation of Escherichia coli 0157:H7 in water. J. Food Prot. 64, 1607-1609 (2001).
  3. Erkmen, O.: Antimicrobial effects of hypochlorite on Escherichia coli in water and selected vegetables. Foodborne Pathog. Dis. 7, 953-958 (2010). https://doi.org/10.1089/fpd.2009.0509
  4. Cleaveland, S., Laurenson, M.K. and Taylor. L.H.: Diseases of humans and their domestic mammals: pathogen characteristics, host range and the risk of emergence. B. Biol. Sci. 356, 991-999 (2001). https://doi.org/10.1098/rstb.2001.0889
  5. Kim, G.S., Kim, D.H., Lim, J.J., Lee, J.J., Han, D.Y., Lee, W.M., Jung, W.C., Min, W.G., Won, C.G., Rhee, M.H., Lee, H.J. and Kim, S.: Biological and antibacterial activities of the natural herb Houttuynia cordata water extract against the intracellular bacterial pathogen Salmonella within the raw 64.7 macrophage. Biol. Pharm. Bull. 31, 2012-2017 (2009).
  6. Kim, D.H., Lim, J.J., Lee, J.J., Jung, W.C., Shin, H.J., Lee, H.J., Kim, G.S. and Kim, S.: Antibacterial and therapeutic effects of Houttuynia cordata ethanol extract for murine salmonellosis. Kor. J. Environ. Agricul. 27, 156-162 (2008). https://doi.org/10.5338/KJEA.2008.27.2.156
  7. Valle, E. and Guiney, D.G.: Characterization of salmonellainduced cell death in human macrophage-like THP-1 cells. Infect. Immun. 73, 2835-2840 (2005). https://doi.org/10.1128/IAI.73.5.2835-2840.2005
  8. Sorrells, K.M., Speck, M.L. and Warren, J.A.: Pathogenicity of Salmonella gallinarumafter metabolic injury by freezing. Appl. Environ. Microbiol. 19, 39-43 (1970).
  9. Beuchat, L.R. and Heaton, E.K.: Salmonella survival on pecans as influenced by processing and storage conditions. Appl. Environ. Micobiol. 29, 795-801 (1975).
  10. Katsuda, K., Kohmoto, M., Kawashima, K. and Tsunemitsu, H.: Frequency of enteropathogen detechtion in sucking and weaned pigs with diarrhea in Japan. J. Vet. Diagn. Invest. 18, 350-354 (2006). https://doi.org/10.1177/104063870601800405
  11. Korsak, N., Jacob, B., Groven, B., Etienne, G., China, B., Ghafir, Y. and Daube, G.: Salmonella contamination of pigs and pork in an integrated pig production system. J. Food Prot. 66, 1126-1133 (2003).
  12. Garland, J.B., Frye, J.G., Gray, J.T., Berrang, M.E., Harrison, M.A., Cray, P.J.F.: Transmission of Salmonella enterica serovar Typhimurium in poultry with and without antimicrobial selective pressure. J. Appl. Microbiol. 101, 1301-1308 (2006). https://doi.org/10.1111/j.1365-2672.2006.03036.x
  13. Sharan, R., Chhibber, S. and Reed, R.H.: A murine model to study the antibacterial effect of copper on infectivity of Salmonella Enterica Serovar Typhimurium. Int. J. Environ. Res. Public Health, 8, 21-36 (2011).
  14. Huang, J.J., Hu, H.Y., Wu, Y.H., Wei, B. and Lu, Y.: Effect of chlorination and ultraviolet disinfection on tetA-mediated tetracycline resistance of Escherichia coli. Chemosphere, 90, 2247-2253, (2013). https://doi.org/10.1016/j.chemosphere.2012.10.008
  15. Whitehead, R.N., Overton, T.W., Kemp, C.L. and Webber, M.A.: Exposure of Salmonella entericSerovar Typhimurium to high level biocide challenge can select multidrug resistant mutants in a single step. PLoS ONE, 6, e22833 (2011). https://doi.org/10.1371/journal.pone.0022833
  16. Turkmani, A., Psaroulaki, A., Christidou, A., Samoilis, G., Mourad, T.A., Tabaa, D. and Tselentis, Y.: Uptake of ciprofloxacin and ofloxacin by 2 Brucella strains and their fluoroquinolone- resitant variants under different conditions. An in vitro study. Dign. Microbiol. Infect. Dis. 59, 447-451 (2007). https://doi.org/10.1016/j.diagmicrobio.2007.06.017
  17. Russell, A.D.: Biocide use and antibiotic resistance: the relevance of laboratory findings to clinical and environmental situations. Lancet Infect. Dis. 3, 794-803 (2003). https://doi.org/10.1016/S1473-3099(03)00833-8
  18. Sheldon, A.T. Jr.: Antiseptic "resistance": real or perceived threat? Clin. Infect. Dis. 40, 1650-1656 (2005). https://doi.org/10.1086/430063
  19. Loaharanu, P.: Irradiated foods. 5th Ed. American Council on Science and Health, New York, pp. 7-8 (2003).
  20. Coelhan, M., Bromig, K.H., Glas, K. and Roberts, A.L.: Determination and levels of the biocide ortho-Phenylphenol in canned beers from different countries. J. Agric. Food Chem. 54, 5731-5735 (2006). https://doi.org/10.1021/jf060743p
  21. Trinetta, V., Morgan, M.T. and Linton, R.H.: Use of highconcentration- short-time chlorine dioxide gas treatments for the inactivation of Salmonella enterica spp. inoculated onto Roma tomatoes. Food Microbiol. 27, 1009-1015 (2010). https://doi.org/10.1016/j.fm.2010.06.009
  22. Formato, A., Naviglio, D., Pucillo, G.P. and Nota, G.: Improved fumigation process for stored foodstuffs by using phosphine in sealed chambers. J. Agric. Food Chem. 60, 331- 338 (2012). https://doi.org/10.1021/jf204323s
  23. Association Francaise de Normalisation (AFNOR): Methods of airborne disinfection of surfaces - Determination of bactericidal, fungicidal, yeasticidal and sopricidal activity. French standard NF T 72-281, AFNOR, Saint-Denis, pp. 6-22 (2009).
  24. Mills-Robertson, F.C., Tay, S.C.K., Duker-Eshun, G., Walana, W. and Badu, K.: In vitro antimicrobial activity of ethanolic fractions of Cryptolepis sanguinolenta. Ann. Clin. Microbiol. Antimicrob. 11, 16 (2012). https://doi.org/10.1186/1476-0711-11-16
  25. Brashears, M.M., Amezquita, A. and Stratton J.: Validation of methods used to recover Escherichia coli O157:H7 and Salmonella spp. subjected to stress conditionst. J. Food Prot. 64, 1466-1471 (2001).
  26. Tanny, G.B., Mirelman, D. and Pistole, T.: Improved filtration technique for concentrating and harvesting bacteria. Appl. Environ. Microbiol. 40, 269-273 (1980).
  27. Mahmoud, B.S.M. and Linton, R.H.: Inactivation kinetics of inoculated Escherichia coli O157:H7 and Salmonella enterica on lettuce by chlorine dioxide gas. Food Microbiol. 25, 244-252 (2008). https://doi.org/10.1016/j.fm.2007.10.015
  28. Himathongkham, S., Nuanualsuwan, S., Riemann, H. and Cliver, D.O.: Reproduction of Escherichia coli O157:H7 and Salmonella typhimurium in artificially contaminated alfalfa seeds and mung beans by fumigation with ammonia. J. Food Prot. 64, 1817-1819 (2001).
  29. Sapers, G.M., Walker, P.N., Sites, J.E., Annous, B.A. and Eblen, D.R.: Vapor-phase decontamination of apples inoculated with Escherichia coli. J. Food Sci. 68, 1003-1007 (2003). https://doi.org/10.1111/j.1365-2621.2003.tb08278.x

Cited by

  1. Fungicidal Efficacy of a Fumigation Disinfectant with Ortho-phenylphenol as an Active Ingredient against Trichophyton mentagrophytes, Candida albicans and Aspergillus niger vol.40, pp.3, 2014, https://doi.org/10.5668/JEHS.2014.40.3.255