DOI QR코드

DOI QR Code

Mathematical Models to Predict Staphylococcus aureus Growth on Processed Cheeses

  • Kim, Kyungmi (Department of Food and Nutrition, Sookmyung Women's University) ;
  • Lee, Heeyoung (Department of Food and Nutrition, Sookmyung Women's University) ;
  • Moon, Jinsan (Veterinary Pharmaceutical Management Division, Animal, Plant and Fisheries Quarantine and Inspection Agency) ;
  • Kim, Youngjo (Livestock Products Sanitation Division, Ministry of Food and Drug Safety) ;
  • Heo, Eunjeong (Food Microbiology Division, Ministry of Food and Drug Safety) ;
  • Park, Hyunjung (Agro-Livestock and Fishery Products Policy Division, Ministry of Food and Drug Safety) ;
  • Yoon, Yohan (Department of Food and Nutrition, Sookmyung Women's University)
  • Received : 2013.06.20
  • Accepted : 2013.08.14
  • Published : 2013.09.30

Abstract

This study developed predictive models for the kinetic behavior of Staphylococcus aureus on processed cheeses. Mozzarella slice cheese and cheddar slice cheese were inoculated with 0.1 ml of a S. aureus strain mixture (ATCC13565, ATCC14458, ATCC23235, ATCC27664, and NCCP10826). The inoculated samples were then stored at $4^{\circ}C$ (1440 h), $15^{\circ}C$ (288 h), $25^{\circ}C$ (72 h), and $30^{\circ}C$ (48 h), and the growth of all bacteria and of S. aureus were enumerated on tryptic soy agar and mannitol salt agar, respectively. The Baranyi model was fitted to the growth data of S. aureus to calculate growth rate (${\mu}_{max}$; ${\log}CFU{\cdot}g^{-1}{\cdot}h^{-1}$), lag phase duration (LPD; h), lower asymptote (log CFU/g), and upper asymptote (log CFU/g). The growth parameters were further analyzed using the square root model as a function of temperature. The model performance was validated with observed data, and the root mean square error (RMSE) was calculated. At $4^{\circ}C$, S. aureus cell growth was not observed on either processed cheese, but S. aureus growth on the mozzarella and cheddar cheeses was observed at $15^{\circ}C$, $25^{\circ}C$, and $30^{\circ}C$. The ${\mu}_{max}$ values increased, but LPD values decreased as storage temperature increased. In addition, the developed models showed acceptable performance (RMSE = 0.3500-0.5344). This result indicates that the developed kinetic model should be useful in describing the growth pattern of S. aureus in processed cheeses.

본 연구는 가공치즈에서 Staphylococcus aureus의 생장을 예측하기 위한 수학적 모델을 개발하였다. 모짜렐라 슬라이스 치즈와 체다 슬라이스 치즈에 S. aureus 혼합균액(ATCC13565, ATCC14458, ATCC23235, ATCC27664, NCCP10826) 0.1 ml (log CFU/g)을 접종한 후 $4^{\circ}C$ (1440 h), $15^{\circ}C$ (288 h), $25^{\circ}C$ (72 h), and $30^{\circ}C$ (48 h)에 저장하면서 총 세균수와 S. aureus 세균수를 tryptic soy agar와 mannitol salt agar를 이용해 각각 확인하였다. S. aureus의 세균 수를 Baranyi model로 분석하여 생장률(${\mu}_{max}$; ${\log}CFU{\cdot}g^{-1}{\cdot}h^{-1}$), 유도기(LPD; h), 초기 세균 수(log CFU/g), 최대 생장 세균수(log CFU/g)를 계산함으로써 1차 모델을 개발하였다. 또한 저장온도와 S. aureus의 ${\mu}_{max}$, LPD의 관계를 분석하기 위해 square root model과 exponential decay model을 이용하였고 이를 통해 2차모델을 개발하였으며 개발된 모델의 평균제곱근 편차(RMSE)를 계산하여 적합성을 검증하였다. $4^{\circ}C$에서는 모든 가공치즈에서 황색포도상구균의 생장이 관찰되지 않았으나 $15^{\circ}C$, $25^{\circ}C$, $30^{\circ}C$에서는 모짜렐라 슬라이스와 체다 슬라이스 치즈에서 황색포도상구균이 생장하였으며($R^2=0.785-0.996$) 저장온도가 높아짐에 따라 생장률은 증가한 반면 유도기는 감소하였다($R^2=0.879-0.999$). 또한 개발된 모델의 RMSE 값은 0.3500-0.5344로 적합하였다. 따라서 본 연구결과는 가공치즈에서 황색포도상구균의 생장 예측에 유용하게 사용될 것이다.

Keywords

References

  1. Kim, H. J., Song, B. S., Kim, J. H., Choi, J., Lee, J. W., Jo, C., and Byun, M. W. Application of gamma irradiation for the microbiological safety of sliced cheddar cheese. J. Radiat. Ind. 1, 15-19 (2007).
  2. Jo, C., Kim, H. J., Kim, D. H., Lee, W. K., Ham, J. S., and Byun, M. W. Radiation sensitivity of selected pathogens in ice cream. Food Control. 18, 859-865 (2007). https://doi.org/10.1016/j.foodcont.2006.04.011
  3. Tekinsen, K. K. and Ozdemir, Z. Prevalence of foodborne pathogens in Turkish Van otlu (Herb) cheese. Food Control. 17, 707-711 (2006). https://doi.org/10.1016/j.foodcont.2005.04.007
  4. KFDA (Korea Food and Drug Administration) Status of food poisoning outbreaks in Korea. Available at: http://fm.kfda.go. kr. Accessed on March 23, 2013 (2013).
  5. Dinges, M. M., Orwin, M., and Schlievert, P. M. Exotoxins of Staphylococcus aureus. Clin. Microbiol. Rev. 13, 16-34 (2000). https://doi.org/10.1128/CMR.13.1.16-34.2000
  6. Glass, K. and Doyle, E. M. Safety of processed cheese: A review of the scientific literature. Available at: http://fri.wisc. edu/docs/pdf/ProcCheese.pdf. Accessed on December 5, 2012 (2005).
  7. Tirado, C. and Schimdt, K. WHO surveillance program for control of foodborne infections and intoxication: preliminary results and trends across greater Europe. World Health Organization. J. Infect. 43, 80-84 (2001).
  8. Wieneke, A. A., Roberts, D., and Gilbert, R. J. Staphylococcal food poisoning in the United Kingdom 1969-90. Epidemiol. Infect. 110, 519-531 (1993). https://doi.org/10.1017/S0950268800050949
  9. Haran, K., Gooden, S. M., Boxrud, D., Jawahir, S., Bender, J. B., and Sreevatsan, S. Prevalence and characterization of Staphylococcus aureus, including methicillin-resistant Staphylococcus aureus, isolated from bulk tank milk from Minnesota dairy farms. J. Clin. Microbiol. 50, 688-695 (2011).
  10. Zinke, C., Winter, M., Mohr, E., and Kromker, V. Occurrence of methicillin-resistant Staphylococcus aureus in cheese produced in German farm-dairies. Adv. Microbiol. 2, 629-633 (2011).
  11. FDAP (Food and Drug Administration Philippines). Revised Guidelines for the Assessment of Microbiological Quality of Processed Foods. Available from: http://www.fda.gov.ph/ attachments/article/17218/FC2013-010.pdf. Accessed on November 13, 2012 (2013).
  12. JETRO (Japan External Trade Organization). Specifications and standards for foods, food additives, etc. under the food sanitation act (Abstract) 2010. Available at: http://www.jetro. go.jp/en/reports/regulations/pdf/foodext2010e.pdf. Accessed on November 10, 2012 (2011).
  13. MPI (Ministry for Primary Industries). Microbiological Reference Criteria for Food. Available at: http://www.foodsafety. govt.nz/elibrary/industry/microbiological_referenceguide_ assess.pdf. Accessed on November 10, 2012 (1995).
  14. QIA (Animal, Plant and Fisheries Quarantine and Inspection Agency) Standard for livestock product processing ingredients. pp. 14, 35-36 (2011).
  15. Varga L. Microbiological quality of commercial dairy products In: Communicating Current Research and Educational Topics and Trends in Applied Microbiology. Mendez-Vilas A. (ed) Formatex Research Center, Badajoz. pp. 487-494 (2007).
  16. Coroller, L., Guerrot, V., Huchet, V., Le Marc, Y., Mafart, P., Sohier, D., and Thuault, D. Modelling the influence of single acid and mixture on bacterial growth. Int. J. Food Microbiol. 100, 167-178 (2005). https://doi.org/10.1016/j.ijfoodmicro.2004.10.014
  17. Van Impe, J. F., Posche,t F., Geeraerd, A. H., and Vereecken, K. M. Towards a novel class of predictive microbial growth models. Int. J. Food Microbiol. 100, 97-105 (2005). https://doi.org/10.1016/j.ijfoodmicro.2004.10.007
  18. Lihono, M. A., Mendonca, A. F., Dickson, J. S., and Dixon, P. M. A predictive model to determine the effects of temperature, sodium pyrophosphate, and sodiuchloride on thermal inactivation of starved Listeria monocytogenes in pork slurry. J. Food Prot. 66, 1216-1221 (2003).
  19. Xanthiakos, K., Simos, D., Angelidis, A. S., Nychas, G. J., and Koutsoumanis, K. Dynamic modeling of Listeria monocytogenes growth in pasteurized milk. J. Appl. Microbil. 100, 1289-1298 (2006). https://doi.org/10.1111/j.1365-2672.2006.02854.x
  20. Baranyi, J. and Roberts T. A. A dynamic approach to predicting bacterial growth in food. Int. J. Food Microbiol. 23, 277- 294 (1994). https://doi.org/10.1016/0168-1605(94)90157-0
  21. McClure, P. J., Beaumont, A. L., Sutherland, J. P., and Roberts, T. A. Predictive modeling of growth of Listeria monocytogenes: the effects on growth of NaCl, pH, storage temperature and sodium nitrate. Int. J. Food Microbiol. 34, 221-232 (1997). https://doi.org/10.1016/S0168-1605(96)01193-2
  22. Lee, J., Skandamis, P., Park, A., Yoon, H., Hwang, I. G., Lee, S. H., Cho, J. I., Yoon, Y. Development of mathematical models to predict Staphylococcus aureus growth in sauces under constant and dynamic temperatures. Food Sci. Technol. Res. 19, 331-335 (2013). https://doi.org/10.3136/fstr.19.331
  23. Dengremont, E. and Membre, J. M. Statistical approach for comparison of the growth rates of five strains of Staphylococcus aureus. Appl. Environ. Microbiol. 61, 4389-4395 (1995).
  24. Oscar, T. Validation of lag time and growth rate models for Salmonella Typhimurium: acceptable prediction zone method. J. Food Sci. 70, M129-M137 (2005). https://doi.org/10.1111/j.1365-2621.2005.tb07103.x

Cited by

  1. Kinetic behaviour of Staphylococcus aureus on cheese as a function of water activity and temperature vol.82, pp.01, 2015, https://doi.org/10.1017/S0022029914000569