DOI QR코드

DOI QR Code

Real-time GPS Ionospheric TEC Estimation over South Korea

  • Received : 2013.06.28
  • Accepted : 2013.08.09
  • Published : 2013.09.15

Abstract

Ionosphere is one of the largest error sources when the navigational signals produced by Global Positioning System (GPS) satellites are transmitted. Therefore it is very important to estimate total electron contents (TEC) in ionosphere precisely for navigation, precise positioning and some other applications. When we provide ionospheric TEC values in real-time, its application can be expanded to other areas. In this study we have used data obtained from nine Global Navigation Satellite System (GNSS) reference stations which have been operated by Korea Astronomy and Space Science Institute (KASI) to detect ionospheric TEC over South Korea in real-time. We performed data processing that covers converting 1Hz raw data delivered from GNSS reference stations to Receiver INdependent Exchange (RINEX) format files at intervals of 5 minutes. We also analyzed the elevation angles of GPS satellites, vertical TEC (VTEC) values and their changes.

Keywords

References

  1. Afraimovich EL, Kosogorov EA, Lesyuta OS, Geomagnetic control of the spectrum of traveling ionospheric disturbances based on data from a global GPS network, Ann Geophys, 19, 7, 723-731 (2001). https://doi.org/10.5194/angeo-19-723-2001
  2. Artru J, Ducic V, Kanamori H, Lognonne P, Marakami M, Ionospheric detection of gravity waves induced by tsunami, Geophys J Int, 160, 840-848 (2005). https://doi.org/10.1111/j.1365-246X.2005.02552.x
  3. Blewitt G, Hammond WC, Kreemer C, Plag HP, Stein S, et al., GPS for real-time earthquake source determination and tsunami warning systgems, J Geod, 83, 335-343 (2009). http://dx.doi.org/10.1007/s00190-008-0262-5
  4. Calais E, Minster JB, GPS, earthquakes, the ionosphere, and the space shuttle, Phys. Earth Planet Inter, 105, 167-181 (1998). https://doi.org/10.1016/S0031-9201(97)00089-7
  5. Choi BK, Cho JH, Lee SJ, Estimation and analysis of GPS receiver differential code biases using KGN in Korean Peninsula, Adv Space Res, 47, 1590-1599 (2011). https://doi.org/10.1016/j.asr.2010.12.021
  6. Davis K, Hartmann GK, Studying the ionosphere with the Global Positioning System, Radio Sci, 32, 1695-1703 (1997). https://doi.org/10.1029/97RS00451
  7. Fedrizzi M, de Paula E, Kantor IJ, Langley R, Komjathy A, et al., Study of the March 31, 2001 magnetic storm effects on the ionospheric GPS data, Adv Space Res, 36, 534-545 (2005). https://doi.org/10.1016/j.asr.2005.07.019
  8. Gao Y, Liu Z, Precise ionosphere modeling using regional GPS network data, J Global Positioning Syst, 1, 18-24 (2002). https://doi.org/10.5081/jgps.1.1.18
  9. Heki K, Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake, GRL, 38, L17312 (2011). http://dx.doi.org/10.1029/2011GL047908
  10. Kleusberg A, Kinematic Relative Positioning Using GPS Code and Carrier Beat Phase Observations, Marine Geod, 10, 257-274 (1986). https://doi.org/10.1080/01490418609388025
  11. Klobuchar JA, Ionospheric Time-Delay Algorithm for Single-Frequency GPS User, IEEE Trans Aero Electro Sys, AES-23, 325-331 (1987). https://doi.org/10.1109/TAES.1987.310829
  12. Komjathy A, Global Ionospheric Total Electron Content Mapping Using the Global Positioning System, PhD Thesis, University of New Brunswick (1997).
  13. Komjathy A, Galvan DA, Stephens P, Butala MD, Akopian V, et al., Detecting ionospheric TEC perturbations caused by natural hazards using a global network of GPS receivers: The Tohoku case study, Earth Planets Space, 64, 1298-1294 (2012).
  14. Mannucci A, Iijima B, Sparks L, Pi X, Wilson BD, et al., Assessment of global TEC mapping using a threedimensional electron density model, J Atmos Sol Terr Phys, 61, 1227-1236 (1999). https://doi.org/10.1016/S1364-6826(99)00053-X
  15. Mannucci A, Wilson BD, Yuan DN, Ho CH, Lindqwister UJ, et al., A global mapping technique for GPS-derived ionospheric total electron content measurements, Radio Sci, 33, 565-582 (1998). https://doi.org/10.1029/97RS02707
  16. Otsuka Y, Ogawa T, Saito A, Tsugawa T, A new technique for mapping of total electron content using GPS network in Japan, Earth Planets Space, 54, 63-70 (2002). https://doi.org/10.1186/BF03352422
  17. Prikryl P, Ghoddousi-Fard R, Kunduri B, Thomas E, Coster A, et al., GPS phase scintillation and proxy index at high latitudes during a moderate geomagnetic storm, Ann Geophys, 31, 805-816 (2013). https://doi.org/10.5194/angeo-31-805-2013
  18. Sardon E, Rius A, Zarraoa N, Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from Global Positioning System observations, Radio Sci, 29, 577-586 (1994). https://doi.org/10.1029/94RS00449
  19. Skone S, Wide area ionosphere grid modeling in the auroral region, PhD thesis, University of Calgary (1998).
  20. Spogli L, Alfonsi L, Franceschi G, Romano V, Aquino M, et al., Climatology of GPS ionospheric scintillations over high and mid-latitude European regions, Ann Geophys, 27, 3429-3437 (2009) https://doi.org/10.5194/angeo-27-3429-2009

Cited by

  1. Retrieval and Validation of Precipitable Water Vapor using GPS Datasets of Mobile Observation Vehicle on the Eastern Coast of Korea vol.32, pp.4, 2016, https://doi.org/10.7780/kjrs.2016.32.4.3
  2. Statistics of Ionospheric Storms Using GPS TEC Measurements Between 2002 and 2014 in Jeju, Korea vol.32, pp.4, 2015, https://doi.org/10.5140/JASS.2015.32.4.335
  3. Evaluation of Point Positioning Using the Global Positioning System and the Quasi-Zenith Satellite System as Measured from South Korea vol.32, pp.4, 2015, https://doi.org/10.5140/JASS.2015.32.4.403