DOI QR코드

DOI QR Code

Stress Analysis and Fatigue Failure of Prefabricated and Customized Abutments of Dental Implants

치과 임플란트에서 기성 지대주와 맞춤형 지대주의 응력분석 및 피로파절에 관한 연구

  • Kim, Hee-Eun (Department of Prosthodontics, College of Dentistry, Dankook University) ;
  • Cho, In-Ho (Department of Prosthodontics, College of Dentistry, Dankook University)
  • 김희은 (단국대학교 치과대학 치과보철학교실) ;
  • 조인호 (단국대학교 치과대학 치과보철학교실)
  • Received : 2013.07.07
  • Accepted : 2013.09.25
  • Published : 2013.09.30

Abstract

This study was to evaluate the stress distributions of prefabricated, customized abutments and fixtures according to their material and shape by three-dimensional finite element analysis. And to investigate the fatigue life and fracture characteristics. Mandibular models were fabricated by reconstruction of the CT scan of patients with normal occlusion. A total of six finite element models were designed, a load of 100 N was applied on the buccal cusps vertically, and 30 degree obliquely. 10 specimens each were fabricated for the more clinically widely used 4 type abutments and were loaded according to ISO 14801. Differences in stress distribution patterns were not found according to the materials of the abutments and fixtures. But a slight difference in the stress level was detected. Customized abutment groups showed lower crown stress levels. One-piece zirconia implant showed the lowest bone stress levels. In the fatigue test, highest values were measured in group 7. Prefabricated abutments showed less variation of fatigue life (P<0.05). Use of customized abutments can improve the fracture resistance of restorations. Especially, use of customized zirconia abutments reinforced by titanium screw connecting parts is recommended.

하악 제 1대구치에 티타늄과 지르코니아 소재의 기성 지대주와 맞춤형 지대주를 이용해 지르코니아 크라운으로 수복한 경우를 3차원 유한요소법을 통해 응력 분포를 분석해 보고, 피로 파절 강도 및 파절 형태를 고찰해 보았다. 정상교합자의 CT scan을 재구성한 하악골 모형상에 제 1대구치 임플란트 지지 지르코니아 크라운으로 수복한 6가지 유한요소 모형을 제작하고, 협측 교두 중앙에 수직과 30도 각도로 100 N의 하중을 가하는 조건으로 응력분포를 분석하였다. 현재 임상적으로 사용되고 있는 4가지 지대주를 이용하여, 군당 10개의 시편을 제작하고, ISO 14801에 따라 피로파절 실험을 실시하였다. 지대주나 고정체의 재질에 따른 응력분포의 차이는 없었고 형태에 따른 응력크기의 차이만 보였다. 맞춤형 지대주 군이 전반적으로 낮은 크라운 응력을 나타내었으며, 지대주 일체형 지르코니아 임플란트는 계면 골조직의 응력이 가장 낮게 나타났다. 피로수명의 평균값은 7군이 가장 높았고, 1군, 2군, 3군의 순서로 낮게 나타났으며(P<0.05), 기성 지대주 군은 피로수명의 편차가 적게 나타났다. 구치부의 임플란트 수복 시에는 맞춤형 지대주의 사용이 상부 보철물의 파절저항성 향상에 유리하며, 심미적 요구도가 높은 경우에는 고정체와의 접합부를 티타늄으로 제작한 지르코니아 맞춤형 지대주의 사용을 고려해 볼 만 하다.

Keywords

References

  1. Rieder CE. Customized implant abutment copings to achieve biologic, mechanical, and esthetic objectives. Int J Periodontics Restorative Dent 1996;16:20-9.
  2. Heydecke G, Sierraalta M, Razzoog ME. Evolution and use of aluminum oxide single-tooth implant abutments: a short review and presentation of two cases. Int J Prosthodont 2002;15:488-93.
  3. Ahmad I. Yttrium-partially stabilized zirconium dioxide posts: an approach to restoring coronally compromised nonvital teeth. Int J Periodontics Restorative Dent 1998;18:454-65.
  4. Boudris P, Shoghikian E, Morin E, Huntnik P. Esthetic option for implant supported single tooth restoration. J Can Dent Assoc 2001;67:508-14.
  5. Ichikawa Y, Akagawa Y, Nikai H, Tsuru H. Tissue compatibility and stability of a new zirconia ceramic in vivo. J Prosthet Dent 1992;68;322-6. https://doi.org/10.1016/0022-3913(92)90338-B
  6. Ebert A, Hedderich J, Kern M. Retention of zirconia ceramic coping bonded to titanium abutment. Int J Oral Maxillofac Implants 2007;22:921-7.
  7. Piconi C, Maccauro G, Muratori F, Brach del Prever E. Alumina and zirconia ceramics in joint replacements. J Appl Biomater Biomech 2003;1:19-32.
  8. Luthardt RG, Sandkuhl O, Herold V, Walter MH. Accuracy of mechanical digitizing with a CAD/CAM system for fixed restorations. Int J Prosthodont 2001;14:146-51.
  9. McLaren EA, Terry DA. CAD/CAM systems, materials and clinical guidelines for all-ceramic crowns and fixed partial dentures. Compend Contin Educ Dent 2002;23:637-41.
  10. Nakamura K, Kanno T, Milleding P, Ortengren U. Zirconia as a dental implant abutment material: a systematic review. Int J Prosthodont 2010;23:299-309.
  11. Glauser R, Sailer I, Wohlwend A, Studer S, Schibli M, Scharer P. Experimental zirconia abutments for implant supported single tooth restoration in esthetically demanding regions; 4-year results of prospective clinical study. Int J Prosthodont 2004;17:285-90.
  12. Yildirim M, Edelhoff D, Hanisch O, Spiekermann H. Ceramic abutments - a new era in achieving optimal esthetics in implant dentistry. Int J Periodontics Restorative Dent 2000;20:81-91.
  13. Sundh A, Mollin M, Sjogren G. Fracture resistance of yttrium oxide partially stabilized zirconia all ceramic bridge after veneering and mechanical fatigue testing. Dental Materials 2005;21:476-82. https://doi.org/10.1016/j.dental.2004.07.013
  14. Bonakdarchiana M, Askaria N, Askarib M. Effect of face form on maximal molar bite force with natural dentition. Arch Oral Biol 2009;54:201-4. https://doi.org/10.1016/j.archoralbio.2008.11.009
  15. Park WJ, Cho IH. Fatigue fracture of different dental implant system under cyclic loading. J Korean Acad Prosthodont 2009;47:424-34. https://doi.org/10.4047/jkap.2009.47.4.424
  16. Patterson EA, Johns RB. Theoretical analysis of the fatigue life of fixture screws in osseointegrated dental implants. Int J Oral Maxillofac Implants 1992;7:26-33.
  17. Rangert B, Krogh PH, Langer B, Van Roekel N. Bending overload and implant fracture: A retrospective clinical analysis. Int J Oral Maxillofac Implants 1995;10:326-34.
  18. Lee SP. Dental Anatomy: Teeth, a beautiful harmony between function and shape. DaehanNarae publishing, Inc. 2009. p131.
  19. O'Brien WJ. Dental materials and their selection. 2nd ed. Chicago: Quintessence 1997. p259-72.
  20. Cibirka RM, Razzoog ME, Lang BR, Stohler CS. Determining the force absorption quotient for restorative materials used in implant occlusal surfaces. J Prosthet Dent 1992;67:361-4. https://doi.org/10.1016/0022-3913(92)90247-8
  21. Geng JP, Tan KB, Liu GR. Application of finite element analysis in implant dentistry: a review of the literature. J Prosthet Dent 2001;85:585-98. https://doi.org/10.1067/mpr.2001.115251
  22. Blatz MB, Bergler M, Holst S, Block MS. Zirconia abutments for single-tooth implants-rationale and clinical guidelines. J Oral Maxillofac Surg 2009;67:74-81.
  23. Mitsias ME, Silva NR, Pines M, Stappert C, Thompson VP. Reliability and fatigue damage modes of zirconia and titanium abutments. Int J Prosthodont 2010 ;23:56-9.
  24. Sundh A, Sjogren G. A study of the bending resistance of implant-supported reinforced alumina and machined zirconia abutments and copies. Dental Materials 2008;24:611-7. https://doi.org/10.1016/j.dental.2007.05.021
  25. Adatia ND, Bayne SC, Cooper LF, Thompson JY. Fracture resistance of yttria-stabilized zirconia dental implant abutments. J Prosthodont 2009;18:17-22. https://doi.org/10.1111/j.1532-849X.2008.00378.x
  26. Hjerppe J, Lassila LV, Rakkolainen T, Narhi T, Vallittu PK. Load-bearing capacity of custom-made versus prefabricated commercially available zirconia abutments. Int J Oral Maxillofac Implants 2011;26:132-8.
  27. Lee WH, Lim JH, Cho IH. Effect of the number and location of implants on the stress distribution in three-unit fixed partial denture: A three-dimensional finite element analysis J Dent Rehab Appl Science 2010;26:221-39.
  28. Shin HS, Chun HJ, Han CH, Lee SH. Three-dimensional stress analysis of implant systems in the mandibular bone with various abutment types and loading conditions. J Korean Acad Prosthodont 2003;41:617-25.
  29. Holmglen EP, Seckinger RJ, Kilgren LM, Mante F. Evaluation parameter of osseointegrated dental implants using finite element analysis - A two dimensional comparative study examing the effects of implant diameter, implant shape, and load direction. J Oral Implantol 1998;24:80-8. https://doi.org/10.1563/1548-1336(1998)024<0080:EPOODI>2.3.CO;2
  30. Lum LB, Osier JF. Load transfer from endosteal implants to supporting bone: an analysis using statics. Part one: Horizontal loading. J Oral Implantol 1992;18:343-8.
  31. Caglar A, Bal BT, Karakoca S, Ayd C, Ylmaz H, Sarsoy S. Three-dimensional finite element analysis of titanium and yttrium-stabilized zirconium dioxide abutments and implants. Int J Oral Maxillofac Implants 2011;26:961-9.
  32. Leutert CR, Stawarczyk B, Truninger TC, Hammerle CH, Sailer I. Bending moments and types of failure of zirconia and titanium abutments with internal implant-abutment connections: a laboratory study. Int J Oral Maxillofac Implants 2012;27:505-12.
  33. Att W, Kurun S, Gerds T, Strub JR. Fracture resistance of single tooth implant supported all ceramic restorations after exposure to the artificial mouth. J Oral Rehabil 2006;33;380-6. https://doi.org/10.1111/j.1365-2842.2005.01571.x
  34. Gibbs CH, Mahan PE, Lundeen HC, Brehnan K, Walsh EK, Holbrook WB. Occlusal forces during chewing and swallowing as measured by sound transmission. J Prosthet Dent 1981;46:443-9. https://doi.org/10.1016/0022-3913(81)90455-8
  35. Haraldson T, Carlsson G. Bite force and oral function in patients with osseointegrated oral implants. Scand J Dent Res 1997;85:200-8.
  36. Aboushelib MN, Salameh Z. Zirconia implant abutment fracture: clinical case reports and precautions for use. Int J Prosthodont 2009;22:616-9.
  37. Canullo L, Morgia P, Marinotti F. Preliminary laboratory evaluation of bicomponent customized zirconia abutments. Int J Prosthodont 2007;20:486-8.
  38. Kim S, Kim HI, Brewer JD, Monaco EA Jr. Comparison of fracture resistance of pressable metal ceramic custom implant abutments with CAD/CAM commercially fabricated zirconia implant abutments. J Prosthet Dent 2009;101:226-30. https://doi.org/10.1016/S0022-3913(09)60043-3
  39. Won HY, Choi YS, Cho IH. Effect of Implant Types and Bone Resorption on the Fatigue Life and Fracture Characteristics of Dental Implants J Dent Rehab Appl Science 2010;26:121-43.
  40. Tagger Green N, Machtei EE, Horwitz J, Peled M. Fracture of dental implants: literature review and report of a case. Implant Dent 2002;11:137-43. https://doi.org/10.1097/00008505-200204000-00014

Cited by

  1. 두 종의 치과용 캐드 소프트웨어에 대한 반복학습의 효과 vol.33, pp.2, 2013, https://doi.org/10.14368/jdras.2017.33.2.88