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Xylitol is a sugar alcohol with a variety of functions 

including bactericidal and anticariogenic effects. However, 

the cellular mechanisms underlying the role of xylitol in bone 

metabolism are not yet clarified. In our present study, we 

exploited the physiological role of xylitol on osteoclast dif-

ferentiation in a co-culture system of osteoblastic and RAW 

264.7 cells. Xylitol treatment of these co-cultures reduced 

the number of tartrate-resistant acid phosphatase (TRAP)- 

positive multinucleated cells induced by 10 nM 1α,25(OH)2 

D3 in a dose‐dependent manner. A cell viability test revea-

led no marked cellular damage by up to 100 mM of xylitol. 

Exposure of osteoblastic cells to xylitol decreased RANKL, 

but not OPG, mRNA expression in the presence of 10
-8
 M 

1α,25(OH)2D3 in a dose‐dependent manner. Furthermore, 

bone resorption activity, assessed on bone slices in the co- 

culture system, was found to be dramatically decreased with 

increasing xylitol concentrations. RANKL and OPG proteins 

were assayed by ELISA and the soluble RANKL (sRANKL) 

concentration was decreased with an increased xylitol con-

centration. In contrast, OPG was unaltered by any xylitol con-

centration in this assay. These results indicate that xylitol 

inhibits 1α,25(OH)2D3-induced osteoclastogenesis by reducing 

the sRANKL/OPG expression ratio in osteoblastic cells.
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Introduction

It has been reported that xylitol has a variety of function 

on cells, such as bactericidal, and anticariogenic effects [1]. 

Xylitol is a five-carbon natural polyhydric alcohol, which is 

widely distributed in fruits, berries, and plants. The natural 

dietary carbohydrate xylitol has been used as a source of 

energy in infusion therapy and found to act curatively in cer-

tain clinical situations. Although this sugar alcohol cannot 

be metabolized, it is taken up by Streptococcus mutans (S. 

mutans) and accumulated as a toxic sugar-phosphate in 

bacterial cells, resulting in growth inhibition. In addition, 

xylitol has an anticariogenic effects by inhibiting the glu-

cosyl transferase (GTF) activity [2] which mediates a sucrose- 

dependant adherence of mutans Streptococci to the tooth 

surface. Besides the bactericidal effect of xylitol, a conti-
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nuous moderate dietary xylitol supplementation leads to inc-

reased bone volume and increased bone mineral content in the 

long bones of aged rats [3-7]. In spite of the extensive xy-

litol research, no experimental evidence for the cellular mec-

hanism of xylitol on bone metabolism has been suggested.

In general, bone remodeling is regulated by the activity of 

bone-forming osteoblasts and bone-resorbing osteoclasts. 

Both osteoblasts and osteoclasts are regulated by a variety of 

hormones and local factors [8-12]. Osteoblasts stem from me-

senchymal stem cells, whereas osteoclasts arise by the diffe-

rentiation of osteoclast precursors of monocyte/macrophage 

lineage. Osteoblasts and osteoclasts are required not only for 

skeletal development, but also for mineral homeostasis and 

the normal remodeling of bone in adult [13]. An imbalance 

between bone formation and bone resorption derived from 

in appropriate RANKL (receptor activator of NF-κB ligand) 

expression by activated lymphocytes and osteoclasts causes 

metabolic bone diseases like osteopetrosis and osteoporosis 

[14,15]. Therefore, osteoblasts and osteoclasts are known to be 

closely related during the process of remodeling [16-18].

Certain kinds of signaling molecules, such as, RANKL, osteo-

protegerin (OPG) and macrophage colony stimulating factor 

(M-CSF), expressed by osteoblasts, are involved in osteoclas-

togenesis. For instance, when osteoblasts/stromal cells are sti-

mulated by osteotropic factors such as parathyroid hormone, 

RANKL is expressed and induces the differentiation of osteo-

clast progenitors by binding to the receptor activator of NF- 

κB (RANK; also known as ODF receptor) [19]. In addition, M- 

CSF is known to be essential for macrophages to be trans-

formed into osteoclasts, while OPG, a decoy receptor of 

RANKL, is known to participate in the regulation of osteocla-

stogenesis [11]. Specifically, OPG, as a member of the tumor 

necrosis factor receptor (TNFR) family, inhibits the osteo-

clastogenesis stimulated by 1α,25(OH)2D3, PTH, or IL-11 [17]. 

Consequently, it is believed that RANKL, M-CSF and OPG, 

which are expressed by osteoblasts, are associated with osteo-

clastogenesis, and that osteoblasts play a major role in the bone 

remodeling process.

Murine RANKL is a 45 kDa, type II transmembrane 

glycoprotein with 316 amino acids that exists naturally as 

non-disulfide-linked homotrimer [17]. The molecule has a 

cytoplasmic domain with 47 amino acids, a transmembrane 

segment with 23 amino acids, and a extracellular region 

with 246 amino acids [20]. Soluble RANKL residue with 177 

amino acids is generated by the action of metaloprotease clea-

vage on membrane-bound RANKL. Although both membrane 

and soluble RANKL are bioactive, the homeostatic form of 

RANKL might be the membrane-bound form [9], while soluble 

RANKL might signal underlying pathology [21]. Cells known 

to express RANKL include odontoblasts and ameloblasts 

[22,23], osteoblasts, T cell, chrondrocytes, fibroblasts, and 

skeletal muscle cells [24]. Murine RANKL is active on 

human cells and shows 85% and 96% amino acid homology 

to human and rat RANKL, respectively [11]. RANKL binds 

and signals via a membrane-bound TNF receptor super family 

member named TRANCE/RANK. RANKL also blinds a na-

turally occurring 55 kDa soluble receptor antagonist named 

osteoprotegerin [17].

With respect to osteoclastogenesis, we have focused on 

the function of xylitol on the osteoblast and osteoclast. Apart 

from some knowledge of the general functions of xylitol in a 

whole body as well as bone density and mass, there is no 

experimental evidence as to whether xylitol is related to osteo-

clastogenesis at the cellular level. Understanding of xylitol 

on bone metabolism at the molecular level of osteoblast and 

osteoclast is necessary. Therefore, we hypothesized that xy-

litol might concern osteoclastogenesis and bone metabolism 

with respect to RANKL, OPG, on the osteoblast. Furthermore 

xylitol might affect osteoclast directly also. To clarify whether 

xylitol can affect the osteoclastogenesis induced by 1α,25 

(OH)2D3, we have applied xylitol on an osteoblast/stromal cell 

co-culture system and RAW 264.7 cells. We have examined 

the osteoclast differentiation rate and bone resorption activity 

on the bone slice with xylitol in co-culture system. Also we 

have compared not only the expression of RANKL and OPG 

mRNA but also the production of sRANKL and OPG protein.

Materials and Methods

Materials 

Routine cell culture media were obtained from GIBCO/ 

BRL (Grand Island, NY). The Tartrate-Resistant Acid Phosp-

hatase Staining Kit was purchased from the Sigma Chemical 

Co., Ltd. (St. Louis, MO). Trizol was purchased from Invi-

trogen Corp. (Carlsbad, CA), and the ICR mice were from 

Samtacho Co., Ltd. (Seoul, Korea). Xylitol was purchased from 

Borak Corp. (Seoul, Korea). All other chemicals were of the 

highest grade commercially available. Recombinant murine 

sRANKL was purchased from KOMA Biotech (Seoul, Korea).
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In vitro osteoclast formation assay 

The osteoblast formation assay was carried out as prev-

iously reported by [25]. Briefly, the osteoblasts were iso-

lated from 1 - 2 day-old newborn mice. 30 - 50 calvariae 

were digested in 10 ml of an enzyme solution containing 

0.2% collagenase (Wako, Japan) and 0.1% dispase (GIBCO/ 

BRL, U.S.A) for 20 minutes at 37
o
C in a shaking water bath. 

The supernatant was discarded and 10 ml of the enzyme 

solution was added. After shaking at 37
o
C for 20 minutes, 

the supernatant was collected carefully and transferred to a new 

tube. This digestion of calvariae by collagenase and dispase was 

repeated three times. The collected supernatant (30 ml) was 

placed in a centrifuge at 1,500 ×g for 10 minutes, to collect 

the osteoblastic cells. Cells were resuspended in α-minimum 

essential medium (α-MEM) containing 10% fetal bovine serum 

(FBS) and cultured to confluence in 100 mm culture dishes at 

a concentration of 1 × 10
5
 cells/dish. The cells were then 

detached from the culture dishes using trypsin-EDTA, sus-

pended in α-MEM with 10% FBS and used for the co- 

culture as osteoblastic cells. 

Femoral and tibial bone marrow cells were collected from 

4-week-old mice. The tibiae and femora were removed and 

dissected free of adhering tissues. The bone ends were re-

moved and the marrow cavities were flushed by slowly in-

jecting media at one end using a 25-gauge needle. The cal-

variae and bone marrow cells collected were washed and used 

in the co-culture. Mouse calvarial cells (1 × 10
4
 cells/well) 

were co-cultured with bone marrow cells (1 × 10
5
 cells/well) 

in α-MEM containing 10% FBS in 48-well plates (Corning 

Inc., Corning, NY). The culture volume was made up to 400 μ

l per well with α-MEM supplemented with 10% FBS, in the 

presence of 1α,25(OH)2D3 (10
-8

 M), without or with xylitol 

(1, 10, 30, 50 or 100 mM). All cultures were maintained at 

37
o
C in a humidified atmosphere containing 5% CO2 in at-

mosphere. After incubation for 4 days, the cells were sub-

jected to tartrate-resistant acid phosphatase (TRAP, an osteo-

clast marker enzyme) staining. In vitro formation assay of 

osteoclast was repeated four times.

Viability test

The MTT (3-4,5-dimethlthiazol-2-yl-)-2,5-diphenyltetrazolium 

bromide) test is based on the principle that tetrazolium salts 

are reduced by reducing mitochondrial enzymes (succinate, 

dehydrogenase), which allows the toxicity of viable cells and 

the level of cellular differentiation to be measured. MTT was 

dissolved in phosphate-buffered saline (PBS) at 5 mg/ml 

and filtered to remove any insoluble residue. MTT solution 

was added directly to the assay plates. The cells were sub-

sequently incubated for an additional 4 hours at 37
o
C. The 

purple formazan crystals that formed were dissolved in DMSO, 

and the plates were read on a spectrophotometer at 570 nm.

Bone resorption activity assay (Pit formation assay)

Osteoblastic cells obtained from the calvariae of newborn 

ICR mouse and bone marrow cells obtained from the tibiae 

and femora of male ICR mouse were co-cultured in α-MEM 

in calcium phosphate apatite-coated 24-well plate, (OAAS 

plate, Oscotec Inc., Korea) at 2 × 10
5 
cells/0.8 ml/well and 2 × 

10
6 
cells/0.8 ml/well, respectively. The cells were cultured for 

4 days at 37°C in a humidified 5% CO2 atmosphere. Then 

the cells were treated with 10 nM 1α,25(OH)2D3 and xylitol 

with different concentrations. Cultures were maintained for 4 

days. The medium in each well was replaced with the respec-

tive fresh medium with 1α,25(OH)2D3 (10
-8
 M) and xylitol. The 

experiments were performed four times. At the end of cul-

ture, attached cells were removed from the plate by abrasion 

with 4% sodium hypochloride solution (Sigma, St. Louis, MO). 

Images of pit were acquired with a digital camera attached 

to a microscope at x100 magnification, and total areas of 

resorption pits were analyzed by the Meta Morph program 

(Molecular Devices, LLC., CA). 

Reverse Transcriptase-PCR

The expressions of RANKL, OPG, and β-actin were eva-

luated by RT-PCR using total RNA isolated from murine 

osteoblastic cells. Total RNA was isolated using Trizol reagent. 

The primers used were : for RANKL (750 bp), 5'-ATCAG-

AAGACAGCACTCACT-3' (forward), 5'-ATCTAGGACATCCA-

TGCTAATGTTC-3' (reverse); for OPG (636 bp), 5'-TGAG 

TGTGAGGAAGGGCGTTA C-3' (forward), 5'-TTCCTCG-

TTCTCTCAATCTC-3' (reverse) and for β-actin (366 bp), 

5'-GGACTCCTATGGTGGGTGACGAGG-3' (forward), and 

5'-GGGAGAGCATAGCCCTCGTAGAT-3' (reverse).

Relative RT-PCR was performed to measure gene exp-

ression of RANKL, OPG, and β-actin mRNAs. Polymerase 

chain reactions were performed on a T gradient 96 PCR 

machine (Biometra Co., Gottingen, Germany) using 1~2 ng 

of cDNA, 5 pmoles of each oligonucleotide primer, 200 μM 

of each dNTP, 1 unit of Taq Polymerase (Applierd Biosy-

stems, CA, USA) and 10 x Taq polymerase buffer in a 50 μl vo-
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lume. The PCR program initially started with a 95
o
C dena-

turation for 5 min, followed by 25 to 35 cycles of 95
o
C/1 min, 

Ta

 
/1 min, 72

o
C/1 min (Ta, annealing temperature; 45.3

o
C for 

RANKL, 47.9
o
C for OPG, and 58

o
C for β-actin). Linear 

amplification range for each gene was tested on the adjusted 

cDNA. The less expressed transcripts of RANKL and OPG 

required 35 cycles of PCR for detection. For β-actin, 25 

cycles of PCR was performed, respectively. Densitometry 

values were measured at each cycle sampling using the 

TINA software (University of Manchester, Manchester. U.K.). 

RT-PCR values are presented as a ratio of the specified 

gene's signal in the selected linear amplification cycle 

divided by the β- actin positive control signal.

ELISA

Quantikine
Ⓡ

 M murine Mouse RANK Ligand kit (R & D 

systems Inc., Minneapolis, IN) was used to analyze RANKL 

protein. Briefly, mRANKL standard was diluted in Calibrator 

Diluent RD6-12 solution to make final concentration of 0, 

31.2, 62.5, 125, 250, 500, 1000, and 2000 pg/ml. Assay 

Diluent RD1W and standards (50 μl each) were added to 

each well and incubated for 2 hours at room temperature. 

Each well was aspirated and washed, repeating the process 

four times for a total of five washes. mRANKL conjugate 

(100 μl) was added to each well and incubated for 2 hours at 

room temperature. Washing was repeated as described above. 

Substrate solution (100 μl) was added to each well and 

incubated for 30 minutes at room temperature in dark room. 

Stop Solution (100 μl) was added to each well and mixed by 

gentle tapping. Then the enzyme reaction yields a blue product 

that turns yellow. The intensity of the color of each well was 

determined within 30 minutes, using a microplate reader at 

450 nm. 

Data analysis and statistics

The results are expressed as the mean ± S.E.M. The statis-

tical significances of differences between the groups were deter-

mined using the one-way ANOVA test. In statistical tests, 

the p value < 0.05 was considered to be significant.

Results

Xylitol inhibits 1α,25(OH)2D3-induced osteoclast formation

Osteoclastogenesis was induced by 1α,25(OH)2D3 in 

osteoblastic cells/bone marrow co-culture. To clarify the 

role of xylitol on bone metabolism, 1, 10, 30, 50, or 100 

mM of xylitol were added to co-cultures and incubated at 

37
o
C for 4 days. When 10 nM of 1α,25(OH)2D3 was added 

to the co-culture TRAP positive multinucleated cells were 

formed, whereas no TRAP positive cells were detected in 

media only. In the presence of xylitol, 1α,25(OH)2D3-indu-

ced osteoclast differentiation was reduced (Fig. 1A). The 

addition of 1, 10, 30, 50 or 100 mM of xylitol reduced the 

number of TRAP positive multinucleated cells up to about 

35% in 50 mM of xylitol (Fig. 1B). However, it might be 

possible that xylitol could cause cell damage directly without 

interrupting the normal maturation of osteoclasts. To con-

firm possibility, we have carried out a viability test. As 

shown in Fig. 1C, xylitol did not show any remarkable toxic 

effect when treated with xylitol at up to 50 mM. These 

results suggest that the effect of xylitol on bone metabolism 

was not caused by its direct toxic effect upon the cells.

Bone resorption activity assay (pit formation assay)

We have measured resorbed bone lacuna and sum up on 

each bone slice. The addition of 10 mM of 1α,25(OH)2D3 

effectively caused the formation of lacuna on bone slices 

whereas no resorption lacuna has been observed without 

1α,25(OH)2D3-induction. However, the resorbed area was 

gradually decreased as the concentration of xylitol was 

increased up to 50 mM (Fig. 2A). At 50 mM of xylitol about 

80% of bone resorption area has been decreased. The ave-

rage areas of resorption pit were measured and depicted in 

Fig. 2B. This indicated that xylitol might be effective on osteo-

clast activation and function.

Xylitol caused changes in mRNA expression of RANKL 

As shown in Fig. 3, the expressions of RANKL and OPG 

mRNA in osteoblasts were monitored by RT-PCR in the 

presence or absence of xylitol. As the xylitol concentration 

in the co-culture medium was increased, the 1α,25(OH)2D3- 

induced expression of RANKL mRNA was decreased (Fig. 

3A). RANKL mRNA expression in osteoblasts was inversely 

proportional to xylitol concentration. On the other hand, the 

expression of OPG mRNA was not changed regardless of 

xylitol concentration. These findings indicate that xylitol inhibits 

osteoclast differentiation by down-regulating the expression 

of RANKL. The ratio of RANKL to OPG mRNA in osteo-

blast is illustrated in Fig. 3B. As the xylitol concentration was 
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A

B

C

Fig. 1. Inhibition of osteoclast differentiation by xylitol. (A), In the 

presence of xylitol, 1α,25(OH)2D3-induced osteoclast differen-

tiation was reduced (×200). (B), TRAP-positive multinucleated 

cells containing three or more nuclei were counted as osteo-

clasts. (C), MTT test. The statistical significance of differences bet-

ween the groups was determined using the one-way ANOVA 

test. (*), In all statistical tests, a p value < 0.05 was considered 

to be statistically significant. Each data was shown in mean ± 

SEM of four cultures.

A

B

Fig. 2. Effects of xylitol treatment on resorption pit formation. 

(A), Resorbed lacuna on the OAAS plates were photographed 

the microscope (x100). (B), Total resorption area per well 

measured by image analyzer and graphed. (*), A p value < 

0.05 was considered to be statistically significant.

increased, the ratio of RANKL to OPG mRNA decreased, 

which means RANKL and OPG, which are closely linked to 

osteoclastogenesis. 

In addition, RANKL and OPG proteins were also analy-

zed with ELISA using anti-RANKL antibody (Fig. 4A). 

RANKL protein was decreased with the increase of xylitol 

concentration. However, the addition of xylitol did not 

change the amount of OPG protein which is consistent with 

OPG mRNA data (Fig. 4B). Consequently, xylitol inhibited 

1α,25(OH)2D3-induced RANKL mRNA and protein, and led 

to alter osteoclastogenesis. In addition, such changes of 

signaling molecules were dependent on the xylitol 

concentration.
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A B C

Fig. 5. Inhibition of sRANKL-induced RAW 264.7 cell differentiation by xylitol. (A), RANKL-induced osteoclast differentiation was 

reduced in the presence of xylitol (×100). (B), TRAP-positive multinucleated cells containing three or more nuclei were counted. (C), 

MTT test. (*), In all statistical tests, a p value < 0.05 was considered to be statistically significant. Each data was shown in mean ±

SEM of four cultures.

A

B

Fig. 3. Effects of xylitol on mRNA expression of RANKL and 

OPG in osteoblastic cells. (A), Various concentrations of 

xylitol were added to the mouse calvarial osteoblast culture 

with 10 nM of 1α,25(OH)2D3. After incubation for 4 days, 

total RNA was then extracted from osteoblasts, and the 

expressions of RANKL and OPG mRNAs were analyzed by 

RT-PCR products. (B), The expression of RANKL mRNA 

compared with OPG mRNA. The results were expressed as the 

means ± SEM of four experiments. (*), A p value < 0.05 was 

considered to be statistically significant.

Xylitol inhibits RANKL-induced osteoclastogenesis.

To clarify the role of xylitol on bone metabolism, 1, 10, 

30, 50, or 100 mM of xylitol were added to cultures and incu-

bated at 37
o
C for 6 days to investigate osteoclast differen-

tiation. Osteoclastogenesis was induced by RANKL in RAW

A

B
Fig. 4. Expression of RANKL and OPG protein in mouse cal-

varial osteoblastic cells. (A), Protein analysis using ELISA showed 

that xylitol inhibited the expression of sRANKL. (B), OPG level 

were slightly increased in osteoblasts stimulated by xylitol, but 

it was not statistically significant. All data were expressed as 

the means ± SEM of four experiments.
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264.7 cell culture. When 50 ng/ml of RANKL was added to 

the RAW 264.7 cell culture, TRAP positive multinucleated 

cells were formed whereas no TRAP positive cells were 

detected in media only. In the presence of xylitol, RANKL- 

induced osteoclast differentiation was reduced (Fig. 5A). 

The addition of 1, 10, 30, 50 or 100 mM of xylitol reduced 

the number of TRAP positive multinucleated cells (Fig. 5B). 

However, it might be possible that xylitol causes cell damage 

directly without interrupting the normal maturation of osteo-

clasts. To confirm this possibility, we have carried out a via-

bility test. As shown in Fig. 5C, xylitol did not show any 

toxic effect at up to 100 mM.

Discussion

In this study, the effects of xylitol on osteoclastogenesis 

in osteoblast-osteoclast co-culture system and differentiation 

of RAW264.7 into osteoclast-like cells were investigated. As 

mentioned earlier, we found xylitol affects the bone meta-

bolism, leading to the changes in 1α,25(OH)2D3-induced osteo-

clastogenesis. Interestingly, xylitol inhibited the 1α,25(OH)2D3- 

induced osteoclastogenesis (by up to 65 % of the control) in 

co-culture system (Fig. 1). Although xylitol inhibited 1α,25 

(OH)2D3-induced osteoclastogenesis, it could be argued that 

such an inhibition of osteoclastogenesis might not due to the 

physiological intervention of xylitol in the normal process 

of osteoclastogenesis, but the cell damage non-physiologi-

cally. To rule out the possibility that xylitol might cause non- 

physiological cell damage we have performed the MTT test. 

The test showed that xylitol did not exert any harmful effect 

upon the cells in this co-culture system, which suggests that 

xylitol inhibits the formation of TRAP positive cells, without 

a toxic effect upon the cells. 

Here, we raised the question about how xylitol triggers 

the down-regulation of 1α,25(OH)2D3-induced osteoclasto-

genesis. Since osteoclast differentiation is mediated by critical 

signal molecules, such as RANKL, OPG and M-CSF [8-11], 

we used an osteoblast/stromal cell co-culture system to 

evaluate whether xylitol alter the 1α,25(OH)2D3-induced 

osteoclast differentiation in terms of the expression profiles 

of RANKL and OPG mRNA. The expression of RANKL in 

osteoblastic cells by the treatment of 1α,25(OH)2D3 was 

down-regulated upon increasing the xylitol concentration, 

and the expression of OPG mRNA was not changed signi-

ficantly (Fig. 3). In addition, the expression of sRANKL 

was decreased with xylitol concentration in the process of 

1α,25(OH)2D3-induced osteoclastogenesis, being in consis-

tency with the decrease in RANKL mRNA expression (Fig. 

4A). On the other hand, OPG protein was slightly increased 

with xylitol treatment but it was not statistically significant 

(Fig. 4B). From the findings described above, such an inhi-

bitory mechanism of osteoclastogenesis by xylitol might be 

associated with modulating RANKL, not OPG expression in 

osteoblasts. Previous study showed that Bumethnide, NaKCl 

cotransmitter inhibitor, reduced expression of RANKL via 

cell volume shrinkage of osteoblast due to the hyperos-

molarity [26]. Molarity of xylitol under 50 mM used in this 

study may not be considered enough to explain effect of 

xylitol. Since, it might be insufficient to cause the hyperos-

motic shrinkage. Then, probability which we can speculate 

is direct effect on inner cell structure or physiologic process, 

which is possible through membrane transportation as in S. 

mutans. If osteoblast and osteoclast have transporter like 

phosphorylation transferase system of fructose (PTS-Fru) or 

similar one, absorbed xylitol-phosphate cannot be metaboli-

zed and it may have toxic effect on bone cells like in S. 

mutans. However, understanding of the exact nature of down- 

regulation of osteoclastogenesis by xylitol requires further 

studies at the level of osteoblast and osteoclast. 

In summary, we have provided the first evidence that xylitol 

inhibit not only RANKL protein synthesis in osteoblastic 

cells but also osteoclast function (bone resorption activity) 

in 1α,25(OH)2D3-induced osteoclastogenesis. Xylitol down- 

regulated osteoclastogenesis in 1α,25(OH)2D3-induced osteoc-

lastogensis in co-culture system via reduction of RANKL 

mRNA expression and sRANKL synthesis.
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