Journal of Digital Convergence (디지털융복합연구)
- Volume 11 Issue 7
- /
- Pages.209-214
- /
- 2013
- /
- 2713-6434(pISSN)
- /
- 2713-6442(eISSN)
DOI QR Code
Speech Recognition Performance Improvement using Gamma-tone Feature Extraction Acoustic Model
감마톤 특징 추출 음향 모델을 이용한 음성 인식 성능 향상
- Ahn, Chan-Shik (Dept. of Computer Engineering, The University of Kwangwoon) ;
- Choi, Ki-Ho (Dept. of Computer Engineering, The University of Kwangwoon)
- Received : 2013.04.30
- Accepted : 2013.07.20
- Published : 2013.07.28
Abstract
Improve the recognition performance of speech recognition systems as a method for recognizing human listening skills were incorporated into the system. In noisy environments by separating the speech signal and noise, select the desired speech signal. but In terms of practical performance of speech recognition systems are factors. According to recognized environmental changes due to noise speech detection is not accurate and learning model does not match. In this paper, to improve the speech recognition feature extraction using gamma tone and learning model using acoustic model was proposed. The proposed method the feature extraction using auditory scene analysis for human auditory perception was reflected In the process of learning models for recognition. For performance evaluation in noisy environments, -10dB, -5dB noise in the signal was performed to remove 3.12dB, 2.04dB SNR improvement in performance was confirmed.
음성 인식 시스템에서는 인식 성능 향상을 위한 방법으로 인간의 청취 능력을 인식 시스템에 접목하였으며 잡음 환경에서 음성 신호와 잡음을 분리하여 원하는 음성 신호만을 선택할 수 있도록 구성되었다. 하지만 실용적 측면에서 음성 인식 시스템의 성능 저하 요인으로 인식 환경 변화에 따른 잡음으로 인한 음성 검출이 정확하지 못하여 일어나는 것과 학습 모델이 일치하지 않는 것을 들 수 있다. 따라서 본 논문에서는 음성 인식 향상을 위해 감마톤을 이용하여 특징을 추출하고 음향 모델을 이용한 학습 모델을 제안하였다. 제안한 방법은 청각 장면 분석을 이용한 특징을 추출을 통해 인간의 청각 인지 능력을 반영하였으며 인식을 위한 학습 모델 과정에서 음향 모델을 이용하여 인식 성능을 향상시켰다. 성능 평가를 위해 잡음 환경의 -10dB, -5dB 신호에서 잡음 제거를 수행하여 SNR을 측정한 결과 3.12dB, 2.04dB의 성능이 향상됨을 확인하였다.
Keywords