DOI QR코드

DOI QR Code

The Effects of Rotating Magnetic Field on Growth Rate, Cell Metabolic Activity and Biofilm Formation by Staphylococcus Aureus and Escherichia Coli

  • Fijalkowski, Karol (Department of Immunology, Microbiology and Physiological Chemistry, West Pomeranian University of Technology) ;
  • Nawrotek, Pawel (Department of Immunology, Microbiology and Physiological Chemistry, West Pomeranian University of Technology) ;
  • Struk, Magdalena (Department of Immunology, Microbiology and Physiological Chemistry, West Pomeranian University of Technology) ;
  • Kordas, Marian (Department of Chemical Engineering, West Pomeranian University of Technology) ;
  • Rakoczy, Rafal (Department of Chemical Engineering, West Pomeranian University of Technology)
  • Received : 2013.05.22
  • Accepted : 2013.07.11
  • Published : 2013.09.30

Abstract

This work presents results of the study which concerns the influence of the rotating magnetic field (RMF) on the growth rate, cell metabolic activity and ability to form biofilms by E. coli and S. aureus. Liquid cultures of the bacteria were exposed to the RMF (RMF frequency f = 1-50 Hz, RMF magnetic induction B = 22-34 mT, time of exposure t = 60 min, temperature of incubation $37^{\circ}C$). The present study indicate the exposition to the RMF, as compared to the unexposed controls causing an increase in the growth dynamics, cell metabolic activities and percentage of biofilm-forming bacteria, in both S. aureus and E. coli cultures. It was also found that the stimulating effects of the RMF exposition enhanced with its increasing frequencies and magnetic inductions.

Keywords

References

  1. L. Fojt, P. Klapetek, L. Strasak, and V. Vetterl, Micron 40, 918 (2009). https://doi.org/10.1016/j.micron.2009.06.009
  2. F. D. Matl, A. Obermeier, J. Zlotnyk, W. Friess, A. Stemberger, and R. Burgkart, Bioelectromagnetics 32, 367 (2011). https://doi.org/10.1002/bem.20667
  3. J. Novak, L. Strasak, L. Fojt, I. Slaninova, and V. Vetterl, Bioelectrochemistry 70, 115 (2007). https://doi.org/10.1016/j.bioelechem.2006.03.029
  4. A. Obermeier, F. D. Matl, W. Friess, and A. Stemberger, Bioelectromagnetics 30, 270 (2009). https://doi.org/10.1002/bem.20479
  5. W. Sun, Q. Tan, Y. Pan, Y. Fu, H. Sun, and H. Chiang, Bioelectromagnetics 31, 566 (2010). https://doi.org/10.1002/bem.20596
  6. T. D. Xie, Y. D. Chen, P. Marszalek, and T. Y. Tsong, Biophys. J. 72, 2496 (1997).
  7. M. S. Davies, Bioelectromagnetics 17, 154 (1996). https://doi.org/10.1002/(SICI)1521-186X(1996)17:2<154::AID-BEM10>3.0.CO;2-S
  8. M. Iwasaka, M. Ikehata, J. Miyakoshi, and S. Ueno, Bioelectrochemistry 65, 59 (2004). https://doi.org/10.1016/j.bioelechem.2004.04.002
  9. J. Galvanoskis and J. Sandblom, Bioelectrochem. Bioenerg. 46, 161 (1998). https://doi.org/10.1016/S0302-4598(98)00143-3
  10. H. M. Huang, S. Y. Lee, W. C. Yao, C. T. Lin, and C. Y. Yeh, Clin. Orthop. Relat. Res. 447, 201 (2006). https://doi.org/10.1097/01.blo.0000203464.35561.be
  11. J. L. Phillips, W. Haggren, W. J. Thomas, T. Ishida-Jones, and W. R. Adey, Biochim. Biophys. Acta 1132, 140 (1992). https://doi.org/10.1016/0167-4781(92)90004-J
  12. B. R. McLeod and E. L. Sandvik, Bioelectromagnetics 31, 56 (2010).
  13. S. Dunca, D. E. Creanga, O. Ailiesei, and E. Nimitan, J. Magn. Magn. Mater. 289, 445 (2005). https://doi.org/10.1016/j.jmmm.2004.11.125
  14. L. Fojt, L. Strasak, and V. Vetterl, Bioelectrochemistry 70, 91 (2007). https://doi.org/10.1016/j.bioelechem.2006.03.023
  15. M. Gao, J. Zhang, and H. Feng, Bioelectromagnetics 32, 73 (2011). https://doi.org/10.1002/bem.20619
  16. V. H. Perez, A. F. Reyes, O. R. Justo, D. C. Alvarez, and R. M. Alegre, Biotechnol. Prog. 23, 1091 (2007).
  17. G. A. Evrendilek, Q. H. Zhang, and E. R. Richter, Biosyst. Eng. 87, 137 (2004). https://doi.org/10.1016/j.biosystemseng.2003.11.005
  18. E. Piatti, M. C. Albertini, W. Baffone, D. Fraternale, B. Citterio, M. P. Piacentini, M. Dacha, F. Vetrano, and A. Accorsi, Comp. Biochem. Physiol. B 132, 359 (2002). https://doi.org/10.1016/S1096-4959(02)00065-9
  19. R. Rakoczy, Chem. Eng. Process. 66, 1 (2013). https://doi.org/10.1016/j.cep.2013.01.012
  20. L. Fojt, L. Strasak, V. Vetterl, and J. Smarda, Bioelectrochemistry 63, 337 (2004). https://doi.org/10.1016/j.bioelechem.2003.11.010
  21. Z. Grosman, M. Kola , and E. Tesarikova, Acta Univ. Palacki Olomuc. Fac. Med. 134, 7 (1992).
  22. M. Kohno, M. Yamazaki, I. Kimura, and M. Wada, Pathophysiology 7, 143 (2000). https://doi.org/10.1016/S0928-4680(00)00042-0
  23. M. Masiuk, R. Rakoczy, S. Masiuk, and M. Kordas, Int. J. Radiat. Biol. 84, 752 (2008). https://doi.org/10.1080/09553000802317786
  24. R. Rakoczy and S. Masiuk, Chem. Eng. Sci. 66, 2277 (2011). https://doi.org/10.1016/j.ces.2011.01.035
  25. H. Wang, H. Cheng, F. Wang, D. Wei, and X. Wang, J. Microbiol. Meth. 82, 330 (2010). https://doi.org/10.1016/j.mimet.2010.06.014
  26. T. Mosmann, J. Immunol. Methods 65, 55 (1983). https://doi.org/10.1016/0022-1759(83)90303-4
  27. E. Peeters, H. J. Nelis, and T. Coenye, J. Microbiol. Meth. 72, 157 (2008). https://doi.org/10.1016/j.mimet.2007.11.010
  28. I. Bajpai, N. Saha, and B. Basu, J. Biomed. Mater. Res. B. Appl. Biomater. 100, 1206 (2012).
  29. I. Belyaev, Mutat. Res. 722, 56 (2011). https://doi.org/10.1016/j.mrgentox.2011.03.012
  30. J. Filipic, B. Kraigher, B. Tepus, V. Kokol, and I. Mandic-Mulec, Bioresour. Technol. 120, 225 (2012). https://doi.org/10.1016/j.biortech.2012.06.023
  31. E. S. A. Gaafar, M. S. Hanafy, E. Y. Tohamy, and M. H. Ibrahim, Rom. J. Biophys. 18, 145 (2008).
  32. S. Horiuchi, Y. Ishizaki, K. Okuno, T. Ano, and M. Shoda, Bioelectrochemistry 53, 149 (2001). https://doi.org/10.1016/S0302-4598(00)00114-8
  33. S. G. Huwiler, C. Beyer, J. Frohlich, H. Hennecke, T. Egli, D. Schurmann, H. Rehrauer, and H. M. Fischer, Bioelectromagnetics 33, 488 (2012). https://doi.org/10.1002/bem.21709
  34. Y. Ishizaki, S. Horiuchi, K. Okuno, T. Ano, and M. Shoda, Bioelectrochemistry 54, 101 (2001). https://doi.org/10.1016/S1567-5394(01)00108-6
  35. W. Ji, H. Huang, A. Deng, and C. Pan, Micron 40, 894 (2009). https://doi.org/10.1016/j.micron.2009.05.010
  36. L. Potenza, L. Ubaldi, R. De Sanctis, R. De Bellis, L. Cucchiarini, and M. Dacha, Mutat. Res.-Gen. Tox. En. 561, 53 (2004). https://doi.org/10.1016/j.mrgentox.2004.03.009
  37. L. Strasak, V. Vetterl, and J. Smarda, Bioelectrochemistry 55, 161 (2002). https://doi.org/10.1016/S1567-5394(01)00152-9
  38. S. Yoshie, M. Ikehata, N. Hirota, T. Takemura, T. Minowa, N. Hanagata, and T. Hayakawa, J. Magn. Reson. Imaging 35, 731 (2012). https://doi.org/10.1002/jmri.22883
  39. J. Laszlo and J. Kutasi, Bioelectromagnetics 31, 220 (2010).
  40. L. Strasak, V. Vetterl, and L. Fojt, Electromagn. Biol. Med. 24, 293 (2005). https://doi.org/10.1080/15368370500379715
  41. A. A. B. Hassan, A. J. Raja, and T. Zaher, Tikrit Medical Journal 16, 34 (2010).
  42. X. Hu, Z. Qiu, Y. Wang, Z. She, G. Qian, and Z. Ren, Bioelectromagnetics 30, 500 (2009). https://doi.org/10.1002/bem.20506
  43. V. Anton-Leberre, E. Haanappel, M. Marsaud, L. Trouilh, L. Benbadis, H. Boucherie, S. Massou, and J. M. Francois, Bioelectromagnetics 31, 28 (2010).
  44. R. W. Hunt, A. Zavalin, A. Bhatnagar, S. Chinnasamy, and K. C. Das, Int. J. Mol. Sci. 10, 4515 (2009). https://doi.org/10.3390/ijms10104515
  45. E. S. A. Gaafar, M. S. Hanafy, E. Y. Tohamy, and M. H. Ibranhim, Rom. J. Biophys. 18, 145 (2008).

Cited by

  1. Magnetic field effects in bacteria E. coli in the presence of Mg isotopes vol.63, pp.5, 2014, https://doi.org/10.1007/s11172-014-0555-1
  2. Enzymatic mechanisms of biological magnetic sensitivity: nuclear spin effects vol.64, pp.7, 2015, https://doi.org/10.1007/s11172-015-1039-7
  3. Increased yield and selected properties of bacterial cellulose exposed to different modes of a rotating magnetic field vol.16, pp.5, 2016, https://doi.org/10.1002/elsc.201500151
  4. The Effect of Rotating Magnetic Field on Enterotoxin Genes Expression in Staphylococcus Aureus Strains vol.21, pp.1, 2016, https://doi.org/10.4283/JMAG.2016.21.1.141
  5. Biochemical and cellular properties of Gluconacetobacter xylinus cultures exposed to different modes of rotating magnetic field vol.19, pp.2, 2017, https://doi.org/10.1515/pjct-2017-0036
  6. Application of static and impulse magnetic fields to bacteria Rhodospirillum rubrum VKM B-1621 vol.7, pp.1, 2017, https://doi.org/10.1186/s13568-017-0362-9
  7. VKM B-1621 vol.39, pp.6, 2018, https://doi.org/10.1002/bem.22130
  8. Impact of a static magnetic field on biodegradation of wastewater compounds and bacteria recombination vol.25, pp.23, 2018, https://doi.org/10.1007/s11356-018-1943-0
  9. The effects of electric, magnetic and electromagnetic fields on microorganisms in the perspective of bioremediation vol.18, pp.1, 2019, https://doi.org/10.1007/s11157-018-09491-9