References
- L. Fojt, P. Klapetek, L. Strasak, and V. Vetterl, Micron 40, 918 (2009). https://doi.org/10.1016/j.micron.2009.06.009
- F. D. Matl, A. Obermeier, J. Zlotnyk, W. Friess, A. Stemberger, and R. Burgkart, Bioelectromagnetics 32, 367 (2011). https://doi.org/10.1002/bem.20667
- J. Novak, L. Strasak, L. Fojt, I. Slaninova, and V. Vetterl, Bioelectrochemistry 70, 115 (2007). https://doi.org/10.1016/j.bioelechem.2006.03.029
- A. Obermeier, F. D. Matl, W. Friess, and A. Stemberger, Bioelectromagnetics 30, 270 (2009). https://doi.org/10.1002/bem.20479
- W. Sun, Q. Tan, Y. Pan, Y. Fu, H. Sun, and H. Chiang, Bioelectromagnetics 31, 566 (2010). https://doi.org/10.1002/bem.20596
- T. D. Xie, Y. D. Chen, P. Marszalek, and T. Y. Tsong, Biophys. J. 72, 2496 (1997).
- M. S. Davies, Bioelectromagnetics 17, 154 (1996). https://doi.org/10.1002/(SICI)1521-186X(1996)17:2<154::AID-BEM10>3.0.CO;2-S
- M. Iwasaka, M. Ikehata, J. Miyakoshi, and S. Ueno, Bioelectrochemistry 65, 59 (2004). https://doi.org/10.1016/j.bioelechem.2004.04.002
- J. Galvanoskis and J. Sandblom, Bioelectrochem. Bioenerg. 46, 161 (1998). https://doi.org/10.1016/S0302-4598(98)00143-3
- H. M. Huang, S. Y. Lee, W. C. Yao, C. T. Lin, and C. Y. Yeh, Clin. Orthop. Relat. Res. 447, 201 (2006). https://doi.org/10.1097/01.blo.0000203464.35561.be
- J. L. Phillips, W. Haggren, W. J. Thomas, T. Ishida-Jones, and W. R. Adey, Biochim. Biophys. Acta 1132, 140 (1992). https://doi.org/10.1016/0167-4781(92)90004-J
- B. R. McLeod and E. L. Sandvik, Bioelectromagnetics 31, 56 (2010).
- S. Dunca, D. E. Creanga, O. Ailiesei, and E. Nimitan, J. Magn. Magn. Mater. 289, 445 (2005). https://doi.org/10.1016/j.jmmm.2004.11.125
- L. Fojt, L. Strasak, and V. Vetterl, Bioelectrochemistry 70, 91 (2007). https://doi.org/10.1016/j.bioelechem.2006.03.023
- M. Gao, J. Zhang, and H. Feng, Bioelectromagnetics 32, 73 (2011). https://doi.org/10.1002/bem.20619
- V. H. Perez, A. F. Reyes, O. R. Justo, D. C. Alvarez, and R. M. Alegre, Biotechnol. Prog. 23, 1091 (2007).
- G. A. Evrendilek, Q. H. Zhang, and E. R. Richter, Biosyst. Eng. 87, 137 (2004). https://doi.org/10.1016/j.biosystemseng.2003.11.005
- E. Piatti, M. C. Albertini, W. Baffone, D. Fraternale, B. Citterio, M. P. Piacentini, M. Dacha, F. Vetrano, and A. Accorsi, Comp. Biochem. Physiol. B 132, 359 (2002). https://doi.org/10.1016/S1096-4959(02)00065-9
- R. Rakoczy, Chem. Eng. Process. 66, 1 (2013). https://doi.org/10.1016/j.cep.2013.01.012
- L. Fojt, L. Strasak, V. Vetterl, and J. Smarda, Bioelectrochemistry 63, 337 (2004). https://doi.org/10.1016/j.bioelechem.2003.11.010
- Z. Grosman, M. Kola , and E. Tesarikova, Acta Univ. Palacki Olomuc. Fac. Med. 134, 7 (1992).
- M. Kohno, M. Yamazaki, I. Kimura, and M. Wada, Pathophysiology 7, 143 (2000). https://doi.org/10.1016/S0928-4680(00)00042-0
- M. Masiuk, R. Rakoczy, S. Masiuk, and M. Kordas, Int. J. Radiat. Biol. 84, 752 (2008). https://doi.org/10.1080/09553000802317786
- R. Rakoczy and S. Masiuk, Chem. Eng. Sci. 66, 2277 (2011). https://doi.org/10.1016/j.ces.2011.01.035
- H. Wang, H. Cheng, F. Wang, D. Wei, and X. Wang, J. Microbiol. Meth. 82, 330 (2010). https://doi.org/10.1016/j.mimet.2010.06.014
- T. Mosmann, J. Immunol. Methods 65, 55 (1983). https://doi.org/10.1016/0022-1759(83)90303-4
- E. Peeters, H. J. Nelis, and T. Coenye, J. Microbiol. Meth. 72, 157 (2008). https://doi.org/10.1016/j.mimet.2007.11.010
- I. Bajpai, N. Saha, and B. Basu, J. Biomed. Mater. Res. B. Appl. Biomater. 100, 1206 (2012).
- I. Belyaev, Mutat. Res. 722, 56 (2011). https://doi.org/10.1016/j.mrgentox.2011.03.012
- J. Filipic, B. Kraigher, B. Tepus, V. Kokol, and I. Mandic-Mulec, Bioresour. Technol. 120, 225 (2012). https://doi.org/10.1016/j.biortech.2012.06.023
- E. S. A. Gaafar, M. S. Hanafy, E. Y. Tohamy, and M. H. Ibrahim, Rom. J. Biophys. 18, 145 (2008).
- S. Horiuchi, Y. Ishizaki, K. Okuno, T. Ano, and M. Shoda, Bioelectrochemistry 53, 149 (2001). https://doi.org/10.1016/S0302-4598(00)00114-8
- S. G. Huwiler, C. Beyer, J. Frohlich, H. Hennecke, T. Egli, D. Schurmann, H. Rehrauer, and H. M. Fischer, Bioelectromagnetics 33, 488 (2012). https://doi.org/10.1002/bem.21709
- Y. Ishizaki, S. Horiuchi, K. Okuno, T. Ano, and M. Shoda, Bioelectrochemistry 54, 101 (2001). https://doi.org/10.1016/S1567-5394(01)00108-6
- W. Ji, H. Huang, A. Deng, and C. Pan, Micron 40, 894 (2009). https://doi.org/10.1016/j.micron.2009.05.010
- L. Potenza, L. Ubaldi, R. De Sanctis, R. De Bellis, L. Cucchiarini, and M. Dacha, Mutat. Res.-Gen. Tox. En. 561, 53 (2004). https://doi.org/10.1016/j.mrgentox.2004.03.009
- L. Strasak, V. Vetterl, and J. Smarda, Bioelectrochemistry 55, 161 (2002). https://doi.org/10.1016/S1567-5394(01)00152-9
- S. Yoshie, M. Ikehata, N. Hirota, T. Takemura, T. Minowa, N. Hanagata, and T. Hayakawa, J. Magn. Reson. Imaging 35, 731 (2012). https://doi.org/10.1002/jmri.22883
- J. Laszlo and J. Kutasi, Bioelectromagnetics 31, 220 (2010).
- L. Strasak, V. Vetterl, and L. Fojt, Electromagn. Biol. Med. 24, 293 (2005). https://doi.org/10.1080/15368370500379715
- A. A. B. Hassan, A. J. Raja, and T. Zaher, Tikrit Medical Journal 16, 34 (2010).
- X. Hu, Z. Qiu, Y. Wang, Z. She, G. Qian, and Z. Ren, Bioelectromagnetics 30, 500 (2009). https://doi.org/10.1002/bem.20506
- V. Anton-Leberre, E. Haanappel, M. Marsaud, L. Trouilh, L. Benbadis, H. Boucherie, S. Massou, and J. M. Francois, Bioelectromagnetics 31, 28 (2010).
- R. W. Hunt, A. Zavalin, A. Bhatnagar, S. Chinnasamy, and K. C. Das, Int. J. Mol. Sci. 10, 4515 (2009). https://doi.org/10.3390/ijms10104515
- E. S. A. Gaafar, M. S. Hanafy, E. Y. Tohamy, and M. H. Ibranhim, Rom. J. Biophys. 18, 145 (2008).
Cited by
- Magnetic field effects in bacteria E. coli in the presence of Mg isotopes vol.63, pp.5, 2014, https://doi.org/10.1007/s11172-014-0555-1
- Enzymatic mechanisms of biological magnetic sensitivity: nuclear spin effects vol.64, pp.7, 2015, https://doi.org/10.1007/s11172-015-1039-7
- Increased yield and selected properties of bacterial cellulose exposed to different modes of a rotating magnetic field vol.16, pp.5, 2016, https://doi.org/10.1002/elsc.201500151
- The Effect of Rotating Magnetic Field on Enterotoxin Genes Expression in Staphylococcus Aureus Strains vol.21, pp.1, 2016, https://doi.org/10.4283/JMAG.2016.21.1.141
- Biochemical and cellular properties of Gluconacetobacter xylinus cultures exposed to different modes of rotating magnetic field vol.19, pp.2, 2017, https://doi.org/10.1515/pjct-2017-0036
- Application of static and impulse magnetic fields to bacteria Rhodospirillum rubrum VKM B-1621 vol.7, pp.1, 2017, https://doi.org/10.1186/s13568-017-0362-9
- VKM B-1621 vol.39, pp.6, 2018, https://doi.org/10.1002/bem.22130
- Impact of a static magnetic field on biodegradation of wastewater compounds and bacteria recombination vol.25, pp.23, 2018, https://doi.org/10.1007/s11356-018-1943-0
- The effects of electric, magnetic and electromagnetic fields on microorganisms in the perspective of bioremediation vol.18, pp.1, 2019, https://doi.org/10.1007/s11157-018-09491-9