DOI QR코드

DOI QR Code

Magnetic Microstructures and Corrosion Behaviors of Nd-Fe-B-Ti-C Alloy by Ga Doping

  • Wu, Qiong (China Jiliang University, Magnetism Key Laboratory of Zhejiang Province) ;
  • Zhang, Pengyue (China Jiliang University, Magnetism Key Laboratory of Zhejiang Province) ;
  • Ge, Hongliang (China Jiliang University, Magnetism Key Laboratory of Zhejiang Province) ;
  • Yan, Aru (Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology & Engineering, Chinese Academy of Sciences) ;
  • Li, Dongyun (China Jiliang University, Magnetism Key Laboratory of Zhejiang Province)
  • Received : 2013.03.06
  • Accepted : 2013.06.10
  • Published : 2013.09.30

Abstract

The influences of Gallium doping on the magnetic microstructures and corrosion behaviors of Nd-Fe-B-Ti-C alloys are investigated. The cooling rate for obtaining fully amorphous structure is raised, and the glassforming ability is improved by the Ga addition. The High Resolution Transmission Electron Microscopy image shows that the ${\alpha}$-Fe and $Fe_3B$ soft magnetic phases become granular surrounded by the $Nd_2Fe_{14}B$ hard magnetic phase. The rms and $({\Delta}{\varphi})_{rms}$ value of Nd-Fe-B-Ti-C nanocomposite alloy thick ribbons in the typical topographic and magnetic force images detected by Magnetic Force Microscopy(MFM) decreases with 0.5 at% Ga addition. The corrosion resistances of $Nd_9Fe_{73}B_{12.6}C_{1.4}Ti_{4-x}Ga_x$ (x = 0, 0.5, 1) alloys are enhanced by the Ga addition. It can be attributed to the formation of more amorphous phases in the Ga doped samples.

Keywords

References

  1. S. Hirosawa, H. Kanekiyo, and T. Miyoshi, J. Magn. Magn. Mater. 281, 58 (2004). https://doi.org/10.1016/j.jmmm.2004.03.046
  2. S. Hirosawa, H. Kanekiyo, T. Miyoshi, K. Murakami, Y. Shigemoto, and T. Nishiuchi, IEEE Trans. Magn. 40, 2883 (2004). https://doi.org/10.1109/TMAG.2004.834216
  3. D. J. Branagan and R. W. McCallum, J. Alloy. Compd. 218, 143 (1995). https://doi.org/10.1016/0925-8388(94)01393-4
  4. D. J. Branagan and R. W. McCallum, J. Alloy. Compd. 244, 40 (1996). https://doi.org/10.1016/S0925-8388(96)02419-X
  5. S. Hirosawa, Y. Shigemoto, T. Miyoshi, and H. Kanekiyo, Scr. Mater. 48, 839 (2003). https://doi.org/10.1016/S1359-6462(02)00620-6
  6. R. Coehoorn, D. B. Mooij, and C. de Waard, J. Magn. Magn. Mater. 80, 101 (1989). https://doi.org/10.1016/0304-8853(89)90333-8
  7. S. Hirosawa, H. Kanekiyo, T. Miyoshi, Y. Shigemoto, K. Murakami, Y. Senzaki, and T. Nishiuchi, J. Alloy. Compd. 408, 260 (2006).
  8. T. Miyoshi, H. Kanekiyo, and S. Hirosawa, IEEE Trans. Magn. 41, 3865 (2005). https://doi.org/10.1109/TMAG.2005.854949
  9. R. Ishii, T. Miyoshi, H. Kanekiyo, and S. Hirosawa, J. Magn. Magn. Mater. 312, 410 (2007). https://doi.org/10.1016/j.jmmm.2006.11.127
  10. Q. Wu, T. Yu, S. Guo, X. C. Feng, M. X. Pan, P. Y. Zhang, B. S. Han, H. L. Ge, and A. R. Yan. J. Appl. Phys. 111, 07A730 (2012). https://doi.org/10.1063/1.3679158