DOI QR코드

DOI QR Code

MODULUS-BASED SUCCESSIVE OVERRELAXATION METHOD FOR PRICING AMERICAN OPTIONS

  • Zheng, Ning (Department of Mathematics, Tongji University) ;
  • Yin, Jun-Feng (Department of Mathematics, Tongji University)
  • Received : 2012.10.17
  • Accepted : 2012.12.01
  • Published : 2013.09.30

Abstract

We consider the modulus-based successive overrelaxation method for the linear complementarity problems from the discretization of Black-Scholes American options model. The $H_+$-matrix property of the system matrix discretized from American option pricing which guarantees the convergence of the proposed method for the linear complementarity problem is analyzed. Numerical experiments confirm the theoretical analysis, and further show that the modulus-based successive overrelaxation method is superior to the classical projected successive overrelaxation method with optimal parameter.

Keywords

References

  1. Y. Achdou and O. Pironneau, Computational Methods for Option Pricing, Frontiers in Applied Mathematics ,SIAM, Philadelphia, 2005.
  2. Z.-Z. Bai, Modulus-based matrix splitting iteration methods for linear complementarity problems, Numer. Linear Algebra Appl. 6 (2010), 917-933.
  3. F. Black and M. Scholes, The pricing of options and corporate liabilities, J. Political Economy 81 (1973), 637-654. https://doi.org/10.1086/260062
  4. M. J. Brennan and E. S. Schwartz, The valuation of American put options, J. Finance 32 (1977), 449-462. https://doi.org/10.1111/j.1540-6261.1977.tb03284.x
  5. C. W. Cryer, The solution of a quadratic programming using systematic overrelaxation, SIAM J. Control 9 (1971), 385-392. https://doi.org/10.1137/0309028
  6. J.-L. Dong and M.-Q. Jiang, A modified modulus method for symmetric positive-definite linear complementarity problems, Numer. Linear Algebra Appl. 16 (2009), 129-143. https://doi.org/10.1002/nla.609
  7. P. A. Forsyth and K. R. Vetzal, Quadratic convergence for valuing American options using a penalty method, SIAM J. Sci. Comput. 23 (2002), 2095-2122. https://doi.org/10.1137/S1064827500382324
  8. A. Hadjidimos and M. Tzoumas, Nonstationary extrapolated modulus algorithms for the solution of the linear complementarity problem, Linear Algebra Appl. 431 (2009), 197-210. https://doi.org/10.1016/j.laa.2009.02.024
  9. J. Hull, Options, Futures, and Other Derivatives, 8th ed., Prentice-Hall, Boston, 2012.
  10. J. Hull and A. White, Valuing derivatives securities using the explicit finite difference method, J. Finan. Quant. Anal. 25 (1990), 87-100. https://doi.org/10.2307/2330889
  11. S. Ikonen and J. Toivanen, Efficient numerical methods for pricing American options under stochastic volatility, Numer. Methods for Partial Differential Equations 24 (2008), 104-126. https://doi.org/10.1002/num.20239
  12. S. Ikonen and J. Toivanen, Operator splitting methods for American option pricing with stochastic volatility, Numer. Math. 113 (2009), 299-324. https://doi.org/10.1007/s00211-009-0227-5
  13. R. Kangro and R. Nicolaides, Far field boundary conditions for Black-Scholes equations, SIAM J. Numer. Anal. 38 (2000), 1357-1368. https://doi.org/10.1137/S0036142999355921
  14. O. Mangasarian, Solutions of symmetric linear complementarity problems by iterative methods, J. Optim. Theory Appl. 22 (1977), 465-485. https://doi.org/10.1007/BF01268170
  15. K. Murty, Linear Complementarity, Linear and Nonlinear Programming, Heldermann, Berlin, 1988.
  16. R. Rannacher, Finite element solution of diffusion problems with irregular data, Numer. Math. 43 (1984), 309-327. https://doi.org/10.1007/BF01390130
  17. R. Seydel, Tools for Computational Finance, Universitext, Springer-Verlag, Berlin, 2002.
  18. D. Tavella and C. Randall, Pricing Financial Instruments: The Finite Difference Method, John Wiley & Sons, Chichester, 2000.
  19. W. M. G. van Bokhoven, A class of linear complementarity problems is solvable in polynomial time, Unpublished paper, Dept. of Electrical Engineering, University of Technology, The Netherlands, 1980.

Cited by

  1. Finite Volume Method for Pricing European and American Options under Jump-Diffusion Models vol.7, pp.02, 2017, https://doi.org/10.4208/eajam.260316.061016a
  2. Modulus-based multigrid methods for linear complementarity problems 2017, https://doi.org/10.1002/nla.2105