References
-
M. Alaeiyan and M.K. Hosseinipoor, A classification of the cubic s-regular graphs of orders 12p and
$12p^2$ , Acta. Univ. Apul. 25 (2011), 153-158. - Y. Cheng and J. Oxley, On weakly symmetric graphs of order twice a prime, J. of Combin. Theory Ser. B 42 (1987), 196-211. https://doi.org/10.1016/0095-8956(87)90040-2
- M.D.E. Conder, Trivalent (cubic) symmetric graphs on up to 2048 vertices, 2006, (http://www.math.auckland.ac.nz/-conder/symmcubic2048list.txt).
- M.D.E. Conder and P. Dobcsanyi, Trivalent symmetric graphs on up to 768 vertices, J. Combin. Math. Combin. Comput. 40 (2002), 41-63.
- J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson, An ATLAS of finite groups, Oxford University press, Oxford, 1985.
- W. Feit and J.G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1936), 775-1029.
- Y.Q. Feng and J.H. Kwak, One-regular cubic graphs of order a small number times a prime or a prime square J. Aust. Math. Soc. 76 (2004), 345-356. https://doi.org/10.1017/S1446788700009903
-
Y.Q. Feng and J.H. Kwak, Classifying cubic symmetric graphs of order 10p or
$10p^2$ , Science in China Series A: Math. 49 (2006) 300-319. https://doi.org/10.1007/s11425-006-0300-9 - Y.Q. Feng and J.H. Kwak, Cubic symmetric graphs of order a small number times a prime or a prime square, J. of Combin. Theory Ser. B 97 (2007), 627-646. https://doi.org/10.1016/j.jctb.2006.11.001
- Y.Q. Feng and J.H. Kwak, Cubic symmetric graphs of order twice an odd prime-power, J. Aust. Math. Soc. 81 (2006), 153-164. https://doi.org/10.1017/S1446788700015792
-
Y.Q. Feng, J.H. Kwak and K. Wang, Classifying cubic symmetric graphs of order 8p or
$8p^2$ , European J. Combin. 26 (2005), 1033-1052. https://doi.org/10.1016/j.ejc.2004.06.015 -
Y.Q. Feng, J.H. Kwak and M.Y. Xu, Cubic s-regular graphs of order
$2p^3$ , J. Graph Theory 52 (2006), 341-352. https://doi.org/10.1002/jgt.20169 - Y.Q. Feng and J.X. Zhou, Cubic vertex-transitive graphs of order 2pq, J. Graph Theory 65 (2010), 285-302. https://doi.org/10.1002/jgt.20481
- J.M. Oh, A classification of cubic s-regular graphs of order 16p, Discrete Math. 309 (2009), 3150-3155. https://doi.org/10.1016/j.disc.2008.09.001
- J.M. Oh, Arc-transitive elementary abelian covers of the Pappus graph, Discrete Math. 309 (2009), 6590-6611. https://doi.org/10.1016/j.disc.2009.07.010
- P. Lorimer, Vertex-transitive graphs: Symmetric graphs of prime valency, J. Graph Theory 8 (1984), 55-68. https://doi.org/10.1002/jgt.3190080107
- D.J. Robinson, A course in the theory of groups, Springer-Verlag, Berlin, 1979.
- W.T. Tutte, A family of cubical graphs, Proc. Cambridge Philos. Soc. 43 (1947), 459-474. https://doi.org/10.1017/S0305004100023720