DOI QR코드

DOI QR Code

CUBIC s-REGULAR GRAPHS OF ORDER 12p, 36p, 44p, 52p, 66p, 68p AND 76p

  • Oh, Ju-Mok (Department of Mathematics, Kangnung-Wonju National University)
  • Received : 2012.05.20
  • Accepted : 2013.05.25
  • Published : 2013.09.30

Abstract

A graph is $s$-regular if its automorphism group acts regularly on the set of its $s$-arcs. In this paper, the cubic $s$-regular graphs of order 12p, 36p, 44p, 52p, 66p, 68p and 76p are classified for each $s{\geq}1$ and each prime $p$. The number of cubic $s$-regular graphs of order 12p, 36p, 44p, 52p, 66p, 68p and 76p is 4, 3, 7, 8, 1, 4 and 1, respectively. As a partial result, we determine all cubic $s$-regular graphs of order 70p except for $p$ = 31, 41.

Keywords

References

  1. M. Alaeiyan and M.K. Hosseinipoor, A classification of the cubic s-regular graphs of orders 12p and $12p^2$, Acta. Univ. Apul. 25 (2011), 153-158.
  2. Y. Cheng and J. Oxley, On weakly symmetric graphs of order twice a prime, J. of Combin. Theory Ser. B 42 (1987), 196-211. https://doi.org/10.1016/0095-8956(87)90040-2
  3. M.D.E. Conder, Trivalent (cubic) symmetric graphs on up to 2048 vertices, 2006, (http://www.math.auckland.ac.nz/-conder/symmcubic2048list.txt).
  4. M.D.E. Conder and P. Dobcsanyi, Trivalent symmetric graphs on up to 768 vertices, J. Combin. Math. Combin. Comput. 40 (2002), 41-63.
  5. J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson, An ATLAS of finite groups, Oxford University press, Oxford, 1985.
  6. W. Feit and J.G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1936), 775-1029.
  7. Y.Q. Feng and J.H. Kwak, One-regular cubic graphs of order a small number times a prime or a prime square J. Aust. Math. Soc. 76 (2004), 345-356. https://doi.org/10.1017/S1446788700009903
  8. Y.Q. Feng and J.H. Kwak, Classifying cubic symmetric graphs of order 10p or $10p^2$, Science in China Series A: Math. 49 (2006) 300-319. https://doi.org/10.1007/s11425-006-0300-9
  9. Y.Q. Feng and J.H. Kwak, Cubic symmetric graphs of order a small number times a prime or a prime square, J. of Combin. Theory Ser. B 97 (2007), 627-646. https://doi.org/10.1016/j.jctb.2006.11.001
  10. Y.Q. Feng and J.H. Kwak, Cubic symmetric graphs of order twice an odd prime-power, J. Aust. Math. Soc. 81 (2006), 153-164. https://doi.org/10.1017/S1446788700015792
  11. Y.Q. Feng, J.H. Kwak and K. Wang, Classifying cubic symmetric graphs of order 8p or $8p^2$, European J. Combin. 26 (2005), 1033-1052. https://doi.org/10.1016/j.ejc.2004.06.015
  12. Y.Q. Feng, J.H. Kwak and M.Y. Xu, Cubic s-regular graphs of order $2p^3$, J. Graph Theory 52 (2006), 341-352. https://doi.org/10.1002/jgt.20169
  13. Y.Q. Feng and J.X. Zhou, Cubic vertex-transitive graphs of order 2pq, J. Graph Theory 65 (2010), 285-302. https://doi.org/10.1002/jgt.20481
  14. J.M. Oh, A classification of cubic s-regular graphs of order 16p, Discrete Math. 309 (2009), 3150-3155. https://doi.org/10.1016/j.disc.2008.09.001
  15. J.M. Oh, Arc-transitive elementary abelian covers of the Pappus graph, Discrete Math. 309 (2009), 6590-6611. https://doi.org/10.1016/j.disc.2009.07.010
  16. P. Lorimer, Vertex-transitive graphs: Symmetric graphs of prime valency, J. Graph Theory 8 (1984), 55-68. https://doi.org/10.1002/jgt.3190080107
  17. D.J. Robinson, A course in the theory of groups, Springer-Verlag, Berlin, 1979.
  18. W.T. Tutte, A family of cubical graphs, Proc. Cambridge Philos. Soc. 43 (1947), 459-474. https://doi.org/10.1017/S0305004100023720