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THE MULTIPLICATIVE VERSION OF WIENER INDEX†

HONGBO HUA∗, ALI REZA ASHRAFI

Abstract. The multiplicative version of Wiener index (π-index), proposed

by Gutman et al. in 2000, is equal to the product of the distances between
all pairs of vertices of a (molecular) graph G. In this paper, we first present
some sharp bounds in terms of the order and other graph parameters in-

cluding the diameter, degree sequence, Zagreb indices, Zagreb coindices,
eccentric connectivity index and Merrifield-Simmons index for π-index of
general connected graphs and trees, as well as a Nordhaus-Gaddum-type
bound for π-index of connected triangle-free graphs. Then we study the

behavior of π-index upon the case when removing a vertex or an edge from
the underlying graph. Finally, we investigate the extremal properties of
π-index within the set of trees and unicyclic graphs.
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1. Introduction

As one of its main research directions, chemical graph theory [28] designs and
applies the so-called molecular topological indices – numerical structure descrip-
tors that can be calculated from the molecular graph [28, 13]. Among numerous
topological indices put forward in the chemical literature, only a few found note-
worthy chemical and/or physio-chemical applications. The first such a molecular
topological index was the Wiener index, put forward by Wiener [31] in 1947. Al-
though it was invented a long time ago, Wiener index is still extensively used
in quantitative structure-property and structure-activity studies. The Wiener
index of a graph G, denoted by W (G), is defied as

W = W (G) =
∑

{u, v}⊆V (G)

dG(u, v).
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Wiener index gained much popularity during the past several decades, and
its many mathematical properties have been explored, see [6, 8, 9, 16, 23, 25,
27, 29, 30] and the references cited therein.

In [11, 12], the multiplicative version of the Wiener index was conceived by
Gutman et al.:

π = π(G) =
∏

{u, v}⊆V (G)

dG(u, v). (1)

It can be seen from Eq. (1) that adjacent vertex pairs in an underlying graph
play no role in contributing to the π-index. That is, the π-index reflects only
long-distance structural features of a molecule. From this, we may conclude that
the properties of π and W are different to some extent. In [11, 12] Gutman et al.
showed that in the case of alkanes there exists a very good correlation between
π and W , and there exists a (either linear or slightly curvilinear) correlation
between π and W among a variety of classes of isomeric alkanes, monocycloalka-
nes, bicycloalkanes, benzenoid hydrocarbons, and phenylenes. Aparting from the
above two chemical literatures, there exists no other existing literatures studying
the π-index, especially for its mathematical properties.

From the viewpoint of graph theory, we are concerned with the properties of
a new graph parameter. Concerning the extremal properties of π-index, it has
been proved that [11] among all nontrivial trees, the star is the unique graph with
the minimum π-index and the path is the unique graph with the maximum π-
index. Moreover, Gutman et al. [11] proved that among all nontrivial connected
graphs, the path is the unique graph with the maximum π-index, while the
complete graph is the unique graph with the minimum π-index. Since then,
there exist no results dealing with further mathematical properties of π-index in
the existing literatures.

In this paper, we aim at exploring further properties of π-index. This paper
is organized as follows. In Section 1, we present some sharp bounds in terms of
the order and other graph parameters including the diameter, degree sequence,
Zagreb indices, Zagreb coindices, eccentric connectivity index and Merrifield-
Simmons index for π-index of general connected graphs and trees, as well as
a Nordhaus-Gaddum-type bound for π-index of connected triangle-free graphs.
In Section 2, we study the behavior of π-index upon the case when removing a
vertex or an edge from the underlying graph. In the last section, we investigate
the extremal properties of π-index within the set of trees and unicyclic graphs.

Before proceeding, we introduce some notation and terminology. For a graph
G, let dG(v) be the degree of a vertex v in G. Let δ(G) and △(G) denote
the minimum and maximum vertex degree in a graph G, respectively. The
distance between two vertices u and v in a graph G is denoted by dG(u, v).
The eccentricity of a vertex v in a connected graph G is defined as ecG(v) =
max{dG(v, u)|u ∈ V (G)}. A tree is a connected graph having no cycles. A
unicyclic graph is a connected graph whose number of vertices equals to number
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of edges. Other notation and terminology not defined here, the reader is referred
to [3].

2. Sharp bounds on π-index involving other graph parameters

In this section, we shall give some sharp bounds for π-index of connected
graphs including other graph parameters such as the order, diameter, degree se-
quence and Merrifield-Simmons index. Moreover, we provide several sharp lower
bounds for π-index of trees in terms of other graph invariants including the eccen-
tric connectivity index, Zagreb indices and Zagreb coindices. Furthermore, we
present a Nordhaus-Gaddum-type lower bound for π-index of connected triangle-
free graphs.

Let D(G, k) denote the number of vertex pairs in G that are at distance k.

Clearly,
∑
k≥1

D(G, k) =
(
n
2

)
= n(n−1)

2 . Thus, we can rewrite Eq. (1) as

π(G) =
∏
k≥1

kD(G, k). (2)

The following result is immediate by using Eq. (2).

Theorem 1. Let G be a connected graph of order n and diameter d. Then

1 ≤ π(G) ≤ d(
n
2),

with either equality if and only if d = 1, that is, G ∼= Kn.

In the following, we shall give an upper bound for the multiplicative Wiener
index of connected graphs in terms of its order and degree sequence. We first
summarize here a result of [21] as the following lemma.

Lemma 1. Let G be a nontrivial connected graph of order n. For each vertex v
in G, it holds

ecG(v) ≤ n− dG(v).

Moreover, all equalities hold together if and only if G ∼= P4 or Kn − iK2 (0 ≤
i ≤ ⌊n

2 ⌋), where Kn− iK2 denotes the graph obtained by removing i independent
edges from G.

Theorem 2. Let G be a nontrivial connected graph of order n and degree se-
quence (d1, d2, . . . , dn). Then

π(G) ≤

√√√√ n∏
i=1

(n− di)n−di−1

with equality if and only if G ∼= P4 or Kn − iK2 (0 ≤ i ≤ ⌊n
2 ⌋).

Proof. For any given vertex v in G, we write D̃G(v) =
∏

u∈V (G)\{v}
dG(u, v).
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Then

π(G) =
∏
k≥1

kD(G, k) =

√ ∏
v∈V (G)

D̃G(v).

For consistence, if dG(v) = n− 1, then we set
∏

u∈V (G)\NG[v]

dG(u, v) = 1. By

this definition, we have D̃G(v) =
∏

u∈V (G)\NG[v]

dG(u, v) for any vertex v ∈ V (G).

By Lemma 1,

D̃G(v) =
∏

u∈V (G)\NG[v]

dG(u, v)

≤
∏

u∈V (G)\NG[v]

ecG(v)

≤
∏

u∈V (G)\NG[v]

(n− dG(v))

= (n− dG(v))
n−dG(v)−1.

The above first equality holds if and only if dG(u, v) = ecG(v) for any u ∈
V (G) \NG[v], that is, ecG(v) ≤ 2. The above second equality holds if and only
if ecG(v) = n− dG(v).

Hence, by Lemma 1,

π(G) =

√ ∏
v∈V (G)

D̃G(v)

≤
√ ∏

v∈V (G)

(n− dG(v))n−dG(v)−1

=

√√√√ n∏
i=1

(n− di)n−di−1

with equality holds if and only if G ∼= P4 or Kn − iK2 (0 ≤ i ≤ ⌊n
2 ⌋). �

From Theorem 2 it follows readily the following consequence.

Corollary 2.1. Let G be a nontrivial connected graph of order n and minimum
degree δ. Then

π(G) ≤ (n− δ)
n(n−δ−1)

2

with equality if and only if G ∼= Kn or or an (n− 2)-regular graph.

A vertex subset S of a graph G is said to be an independent set of G, if the
subgraph induced by S is an empty graph. Then

β = max{|S| : S is an independent set of G}
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is said to be the independence number of G.
The Merrifield-Simmons index of a graph G (see [17, 18]) is defined as

i(G) =
∑
k≥0

i(G; k),

where i(G; k) is the number of k-membered independent sets in G for k ≥ 1, and
it is usually assumed that i(G; 0) = 1 for the sake of convenience and consistence.

In the following result, we shall present a sharp upper bound for π-index in
terms of the order, diameter and Merrifield-Simmons index of the underlying
graph.

Theorem 3. Let G be a nontrivial connected graph of order n and diameter
d ≥ 2. Then

π(G) ≤ di(G)−n−1

where the equality is attained if and only if d = 2 and the independence number
of G is exactly two.

Proof. It is obvious that the number of vertex pairs {u, v} in G at distance
greater than or equal to two is exactly i(G; 2). Moreover, we have

i(G) ≥ 1 + n+ i(G; 2)

with equality if and only if the independence number of G is equal to 2. That
is,

i(G; 2) ≤ i(G)− n− 1

with equality if and only if the independence number of G is equal to 2.
Then

π(G) =
∏
k≥1

kD(G, k)

≤ d

∑
k≥2

D(G, k)

= di(G;2)

≤ di(G)−n−1.

The equality is attained in the above first inequality if and only if d = 2,
and the equality is attained in the above second inequality if and only if the
independence number of G is exactly two. This proves theorem. �
Remark 1. Consider the sharpness of bound in Theorem 3. It is easy to see
that Kn − iK2 (1 ≤ i ≤ ⌊n

2 ⌋) and the cycle C5 attain the bound.

In the following, we shall give sharp lower bounds for π-index of the underlying
trees in terms of the Zagreb indices, the first Zagreb coindex, or the eccentricity
index.

Let M1(G) =
∑

v∈V (G)

(dG(v))
2 and M2(G) =

∑
uv∈E(G)

dG(u)dG(v) denote, re-

spectively, the first and second Zagreb index of a graph G (see [4, 15, 22, 24,
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33, 34]). It is obvious that one can rewrite the first Zagreb index as M1(G) =∑
uv∈E(G)

(dG(u) + dG(v)).

Theorem 4. Let T be a tree with n vertices and diameter at least three. Then

π(T ) ≥
(
3

2

)n−1

· 3M2(T ) ·

(√
2

3

)M1(T )

with equality if and only if T is a double star.

Proof. Let #Pk(T ) denote the number of k-vertex paths in T . Then #P1(T ) =

n, #P2(T ) = n−1. Moreover, #P3(T ) =
∑

v∈V (T )

(
dT (v)

2

)
=

∑
v∈V (T )

dT (v)(dT (v)−1)
2 =

1
2M1(T )−n+1 and #P4(T ) =

∑
uv∈E(T )

(dT (u)−1)(dT (v)−1) = M2(T )−M1(T )+

n− 1.
By Eq. (2),

π(T ) ≥ 2#P3(T )3#P4(T )

with equality if and only if d = 3.
That is,

π(T ) ≥ 2
1
2M1(T )−n+13M2(T )−M1(T )+n−1

=

(
3

2

)n−1

· 3M2(T ) ·

(√
2

3

)M1(T )

with equality if and only if T is a double star.
This completes the proof. �

For a nontrivial graph G, let M1(G) =
∑

uv ̸∈E(G)

(dG(u) + dG(v)) denote the

first Zagreb coindex (see [1, 2, 14, 19]). It is obvious that one can rewrite
M1(G) =

∑
u∈V (G)

dG(u)(n − dG(u) − 1) = 2m(n − 1) −M1(G), where n and m

are, respectively, the number of number of vertices and edges in G. Using this
fact and Theorem 4, we get the following result.

Corollary 2.2. Let T be a tree with n vertices and diameter at least three. Then

π(T ) ≥
(
3

2

)n−1

· 3M2(T ) ·

(√
2

3

)2n(n−1)−ξc(T )

with equality if and only if T ∼= P4.

For a nontrivial graph G, let ξc(G) =
∑

u∈E(G)

ecG(u)dG(u) denote the eccentric

connectivity index (see [5, 7, 20, 35]).
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Corollary 2.3. Let T be a tree with n vertices and diameter at least three. Then

π(T ) ≥
(
3

2

)n−1

· 3M2(T ) ·

(√
2

3

)2n(n−1)−ξc(T )

with equality if and only if T ∼= P4.

Proof. According to Lemma 1, we have

ξc(T ) =
∑

v∈V (G)

ecT (v)dT (v)

≤
∑

v∈V (T )

(n− dT (v))dT (v)

= 2mn−M1(T ),

with equality if and only if ecT (v) = n−dT (v) holds for each vertex v in T , that
is, T ∼= P4.

Hence, M1(T ) ≤ 2mn − ξc(T ) = 2n(n − 1) − ξc(T ) with the equality if and
only if T ∼= P4.

Note that
(√

2
3

)x
is an decreasing function. Then

(√
2

3

)M1(T )
≥

(√
2

3

)2n(n−1)−ξc(T )

with equality if and only if T ∼= P4.
Combining this fact and Theorem 4, we obtain

π(T ) ≥
(
3

2

)n−1

· 3M2(T ) ·

(√
2

3

)2n(n−1)−ξc(T )

with equality if and only if T ∼= P4. This completes the proof. �

In the following, we give a Nordhaus-Gaddum-type result for the π-index
of connected triangle-free graphs. Suppose that G is a connected triangle-free
graph on n vertices such that G is connected. Then we clearly have n ≥ 4. If
n = 4, then G must be isomorphic to the path P4. So we will assume that n ≥ 5
in our following theorem.

Theorem 5. Let G be a connected triangle-free graph of order n ≥ 5 and G be
its connected complement. Then

lnπ(G) + lnπ(G) ≥
(
n

2

)
ln 2,

with equality if and only if G ∼= C5 or G ∼= C5.

Proof. Let d and d denote the diameters of G and G, respectively. By the
definition,

lnπ(G) ≥
[(

n

2

)
−m

]
ln 2

with the equality if and only if d = 2.
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Let m and m denote the number of edges in G and G, respectively. Similar
to above,

lnπ(G) ≥
[(

n

2

)
−m

]
ln 2

with the equality if and only if d = 2.
Note that m+m =

(
n
2

)
. According to the above two inequalities,

lnπ(G) + lnπ(G) ≥
(
n

2

)
ln 2,

with the equality if and only if d = 2 and d = 2.
Assume first that lnπ(G) + lnπ(G) =

(
n
2

)
ln 2. Then d = 2 and d = 2. We

claim that G has no pendent vertices. Suppose to the contrary that there exists
a pendent vertex v in G and let u be its unique neighbor. Since d = 2, we must
have dG(u) = n− 1. But then G is disconnected. Hence δ(G) ≥ 2.

If △(G) = 2, then G is just a cycle Cn. Since d = 2 and d = 2, we thus have
n = 5, that is, G ∼= C5 (C4 is disconnected).

Assume now that △(G) ≥ 3. Let v be a vertex in G with dG(v) = △ and let
NG(v) = {v1, v2, . . . , v△}. Since G is triangle-free, then G[v1, v2, . . . , v△] is a
null graph. Thus, for any vertex u in V (G) \ NG[v], we have uvi ∈ E(G) (i =
1, . . . , △), since d = 2. Let A = NG(v) = {v1, v2, . . . , v△} and B = V (G) \ A.
If there exist two vertices, say x and y, in B \ {v} such that xy ∈ E(G), then
G contains triangles vixyvi (i = 1, . . . , △), a contradiction. Thus, G is the
complete bipartite graph K△, n−△ with one partite set being A and another

partite set being B. But then, G = K△, n−△ is disconnected, a contradiction to

our assumption. The arguments above lead us to that lnπ(G)+lnπ(G) =
(
n
2

)
ln 2

only if G ∼= C5.
Conversely, we have lnπ(C5) + lnπ(C5) = 10 ln 2 =

(
n
2

)
ln 2. This completes

the proof. �

3. The effect of the removal of a vertex or an edge on π-index

In this section, we study the behavior of π-index upon the case when a vertex
or an edge is removed from the underlying graph. More precisely, we prove the
following two results.

Proposition 1. Let G be a nontrivial n-vertex connected graph.
(i) If e = uv is not a cut edge in G, then π(G− e) ≥ 2π(G);
(ii) If w is not a cut vertex in G and dG(w) = n− 1, then π(G−w) ≥ π(G).

Proof. For (i), one can easily see that dG−e(x, y) ≥ dG(x, y) for any two vertices
x and y in G. Moreover, dG−e(u, v) ≥ 2 = 2dG(u, v). Hence, π(G−e) ≥ 2π(G),
as desired.
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Let us proceed to (ii). Let D̃G(v) be the same quantity as defined in Theorem
2. Since dG(w) = n− 1, we have

π(G) =

√ ∏
v∈V (G)

D̃G(v) =

√ ∏
v∈V (G)\{w}

D̃G(v)

≤
√ ∏

v∈V (G)\{w}

D̃G−w(v) = π(G− w),

as claimed. �

Remark 2. The equality in (i) can be attained at the graph C3 or the graph S+
n .

The equality in (ii) can also be attained at many graph families. For instance,
both the complete graph Kn and the graph K∗

2, n−2, obtained from the complete
graph K2, n−2 by adding an edge between two vertices of degree n − 2, achieve
this equality.

4. Extremal trees and unicyclic graphs w.r.t. the π-index

In this section, we characterize the n-vertex tree and unicyclic graph with
the maximum π-index. To do this, we need to introduce two kinds of graph
transformations on π-index as introduced in the following lemma.

Lemma 2. Let w be a vertex of a nontrivial connected graph G. For nonnegative
integers p and q, let G(s, t) denote the graph obtained from G by attaching to
vertex w pendant paths P = wv1v2 . . . vs and Q = wu1u2 . . . ut of lengths s and
t, respectively. Let G(s+ t, 0) = G(s, t)− wu1 + vsu1.

(i). If s ≥ t ≥ 1, then π(G(s+ t, 0)) > π(G(s, t));
(ii). If s ≥ t ≥ 2, then π(G(s+ 1, t− 1)) > π(G(s, t)).

Proof. We only prove (i) here. The proof of (ii) can be conducted by the same
way. For any two vertices x, y in V (G), dG(s+t,0)(x, y) = dG(s,t)(x, y). Similarly,
for any vertex x in V (G) and vi, i = 1, . . . , s, dG(s+t,0)(x, vi) = dG(s,t)(x, vi).
Moreover, for any pair of vertices x, y in {v1, . . . , vs;u1, . . . , ut} of G(s, t), there

exists a pair of vertices x
′
, y

′
in {v1, . . . , vs;u1, . . . , ut} of G(s+ t, 0) such that

dG(s+t,0)(x
′
, y

′
) = dG(s,t)(x, y). However, for each vertex x in V (G) and each

uj , j = 1, . . . , t, dG(s+t,0)(x, uj) > dG(s,t)(x, uj). According to the definition of
π-index, we have arrived at our desired result. �

Let Tn,△ denote the tree obtained by connecting an edge between a pendent
vertex of the star S△+1 and a pendent vertex of the path Pn−△−1. By repeatedly
using of Lemmas 2(i) and (ii), we may arrive at the following result on trees in
the end.

Theorem 6. Among all trees of order n and maximum degree △, the tree Tn,△
is the unique tree having the maximum π-index.

In particular, we have:
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Corollary 4.1 ([11]). Among all trees of order n ≥ 2, the path Pn is the unique
tree having the maximum π-index.

Corollary 4.2 ([11]). Among all connected graphs of order n ≥ 2, the path Pn

is the unique graph having the maximum π-index.

Proof. Let G be a connected graph of order n with the maximum π-index. If G
is a tree, then G ∼= Pn by Corollary 4.1. If G is a connected graph not isomorphic
to a tree, then G has a spanning tree, say T (G). By Proposition 1(i), we have
π(G) < π(T (G)), a contradiction. This completes the proof. �

For n ≥ 4, let T 1
n be the tree obtained from the path Pn−1 = v0v1 . . . vn−2 by

attaching to v1 a pendent edge v1vn. By repeatedly using of Lemmas 2(i) and
(ii), we can deduce the following consequence.

Theorem 7. Among all trees of order n ≥ 4, the tree T 1
n is the unique tree

having the second-maximum π-index.

Recall that the factorial n! is defined recursively as

1! = 1 2! = 2 n! = n(n− 1)!

for n ≥ 3.
Gutman et al. [11] put forward the “double factorial” n!! as

1!! = 1 2!! = 2 n!! = n!(n− 1)!!

for n ≥ 3.
Here, we should note that this definition is quite different from the traditional

definition for “double factorial” n!!.
By means of this definition for “double factorial” n!!, they obtained that [11]:

π(Pn) = (n− 1)!!. (3)

For n ≥ 4, let P 3
n be the unicyclic graph obtained from T 1

n by connecting an
edge between v0 and vn.

Theorem 8. Among all unicyclic graphs of order n ≥ 5, the graph P 3
n is the

unique unicyclic graph having the maximum π-index.

Proof. Suppose that G is a unicyclic graph having the maximum π-index, but
not isomorphic to Cn and P 3

n . Then there exists an edge e in the unique cycle
of G such that G − e is a tree, but G − e � Pn, T

1
n . By Proposition 1(i) and

Theorem 7, we have

π(G) ≤ 1

2
π(G− e) <

1

2
π(T 1

n).

It can be seen that π(T 1
n) = 2π(P 3

n). So, π(G) < π(P 3
n), a contradiction to our

choice of G. Hence, if G � Cn, then G ∼= P 3
n .

Now, we prove that π(Cn) < π(P 3
n). Let e = xy be an edge in the cycle

Cn. The removal of the edge xy from Cn results in Pn. Note that dCn(x, y) =
1 and dPn(x, y) = n − 1. Similar to the proof of (i) in Proposition 1, we
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can verify that π(Cn) < 1
n−1π(Pn), as n ≥ 5. Combining this and Eq. (3),

π(Cn) <
1

n−1π(Pn) = (n− 2)!(n− 2)!!. Note that π(T 1
n) = 2(n− 2)!π(Pn−1) =

2(n− 2)!(n− 2)!!. Thus, π(Cn) < π(P 3
n). This completes the proof. �

Similar to the proof of Corollary 4.2, we can prove the following result by
means of Theorem 8.

Corollary 4.3. Among all connected graphs, not isomorphic to a tree, of order
n ≥ 5, the graph P 3

n is the unique graph having the maximum π-index.
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34. B. Zhou and D. Stevanović, A note on Zagreb indices, MATCH Commun. Math. Comput.

Chem. 56 (2006), 571-578.
35. B. Zhou and Z. Du, On eccentric connectivity index, MATCH Commun. Math. Comput.

Chem. 63 (2010), 181-198.

Hongbo Hua

Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huai’an, Jiangsu
223003, P.R. China.

Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an,
Shaanxi 710072, P.R. China.
e-mail: hongbo.hua@gmail.com

Ali Reza Ashrafi

Department of Mathematics, Faculty of mathematical Sciences, University of Kashan,
Kashan 87317-51167, I.R. Iran.

e-mail: ashrafi@kashanu.ac.ir


