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EXPONENTIAL INEQUALITIES AND COMPLETE

CONVERGENCE OF EXTENDED ACCEPTABLE RANDOM

VARIABLES†
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Abstract. Giuliano Antonini et al.(2008) have introduced the concept of
extended acceptability and the results show that the extended acceptabil-

ity structure has no effect on the exponential inequality except replacing a
constant M = 1 with a constant M > 0. We discuss the complete conver-
gence for extended acceptable random variables by using the exponential
inequality.
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1. Introduction

Giuliano Antonini et al.(2008) recently have introduced the concept of ac-
ceptability as follows; A finite sequence {Xi, 1 ≤ i ≤ n} of random variables is
said to be acceptable if for any real λ,

E exp(λ

n∑
i=1

Xi) ≤ Πn
i=1E exp(λXi). (1.1)

An infinite sequence {Xn, n ≥ 1} of random variable is acceptable if every finite
subcollection is acceptable. They also mentioned that a sequence of negatively
dependent random variables with a finite Laplace transform or finite moment
generating function near zero provides us an example of acceptable random
variables. In addition, Liu(2009) introduced the concept of extended negative
orthant dependence by extending the negative orthant dependence as follows;
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A sequence of random variables {Xi, i ≥ 1} is said to be extended negatively
orthant dependent(ENOD) if there exists a constant M > 0 such that both

P (X1 ≤ x1, · · · , Xn ≤ xn) ≤ MΠn
i=1P (Xi ≤ xi) (1.2)

and

P (X1 > x1, · · · , Xn > xn) ≤ MΠn
i=1P (Xi > xi) (1.3)

hold for each n = 1, 2, · · · and all x1, · · · , xn. Recall that the sequence {Xi, i ≥
1} is said to be negatively orthant dependent(NOD) if both (1.2) and (1.3) hold
when M = 1; it is called positively orthant dependent(POD) if (1.2) and (1.3)
hold both in the reverse direction when M = 1. Obviously, NOD(See Joag-
Dev and Proschan(1983) and Baek et al.(2011)) sequence must be an ENOD
sequence.

We defined an extended acceptability from the definitions of acceptability and
extended orthant dependence as follows.

Definition 1.1. A finite sequence {Xi, 1 ≤ i ≤ n} of random variables is said
to be extended acceptable if there exists a constant M > 0 such that for any
real λ

E exp(λ
n∑

i=1

Xi) ≤ MΠn
i=1E exp(λXi). (1.4)

An infinite sequence {Xn, n ≥ 1} of random variables is extended acceptable
if every finite subcollection is extended acceptable. A sequence {Xi, i ≥ 1} of
random variables is obviously acceptable if (1.4) holds when M = 1 and hence
an acceptable sequence must be an extended acceptable sequence. In addition,
(1.2) and (1.3) obviously satisfy (1.4). Therefore, the ENOD random variables
are extended acceptable random variables.

From the similar method in Giuliano Antonini etc., a sequence of ENOD
random variables with a finite Laplace transform or finite moment generating
function near zero provides us an example of extended acceptable random vari-
ables. In particular, there have been many investigations on the exponential
inequality for dependent random variables. For examples, Kim et al.(2007) and
Xing et al.(2010),and Wang et al.(2010) had established an exponential inequal-
ity for dependent random variables. Sung et al.(2011) obtained an exponential
inequality for identically distributed acceptable random variables as follows.

Theorem 1.2. Let {Xn, n ≥ 1} be a sequence of identically distributed ac-
ceptable random variables with Eeδ|X1| < ∞ for some δ > 0. Then for any
0 < ϵ ≤ Kδ,

P (|Sn − ESn| ≥ nϵ) ≤ 2 exp(−nϵ2

4K
), (1.5)

where Sn = X1 + · · ·+Xn.
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The main goal of our paper is to extend Theorem 1.1 to extended acceptable
random variables; discuss the above result for extended acceptable random vari-
ables and in addition complete convergence of extended acceptable. This paper
is organized as follows. In section 2, we provide the establish the exponential in-
equalities for sum of extended acceptable random variables and in section 3, we
obtain a result dealing with the complete convergence for these random variables
by using the exponential inequality.

2. Exponential inequalities for extended acceptable random variables

First we extend Sung et al. s’(2011) results on acceptable structure to the
extended acceptability cases.

Theorem 2.1. Let {Xn, n ≥ 1} be a sequence of identically distributed and
extended acceptable random variables with Eeδ|X1| < ∞ for some δ > 0. Then
there exists a constant M > 0 such that for any 0 < ϵ ≤ Kδ

P (Sn − ESn ≥ nϵ) ≤ M exp(−nϵ2

4K
) (2.1)

and

P (|Sn − ESn| ≥ nϵ) ≤ 2M exp(−nϵ2

4K
), (2.2)

where Sn = X1 + · · ·+Xn.

Proof. The proof is similar to that of Theorem 2.1 in Sung et al.(2011). Sup-
pose that 0 < ϵ ≤ Kδ, then by Markov’s inequality, the definition of extended
acceptable random variables and Sung et al’s Lemma 2.1, for any 0 < λ ≤ δ/2,

P (

n∑
i=1

(Xi − EXi) > nϵ) = P (exp(λ

n∑
i=1

(Xi − EXi)) > exp(λnϵ))

≤ exp(−λnϵ)E exp(λ
n∑

i=1

(Xi − EXi))

≤ M exp(−λnϵ)
n∏

i=1

exp(λ(Xi − EXi))

≤ M exp(−λnϵ)
n∏

i=1

exp(Kλ2) = M exp(−λnϵ+Kλ2n). (2.3)

We take λ = ϵ/(2K) in the last term and note that ϵ/(2K) ≤ δ/2 by condition
0 < ϵ ≤ Kδ. Thus, we get that

P (

n∑
i=1

(Xi − EXi) > nϵ) ≤ M exp(−nϵ2

4K
). (2.4)
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Since a sequence {−Xn, n ≥ 1} is also extended acceptable, by replacing Xi with
−Xi in the above statement, we obtain that

P (−
n∑

i=1

(Xi − EXi) > nϵ) ≤ M exp(−nϵ2

4K
). (2.5)

It follows from (2.4) and (2.5) that

P (|
n∑

i=1

(Xi − EXi)| > nϵ)

= P (
n∑

i=1

(Xi − EXi) > nϵ) + P (−
n∑

i=1

(Xi − EXi) > nϵ) ≤ 2M exp(−nϵ2

4K
).

�

Remark 2.1. Theorem 2.1 of Sung et al.(2011) is a special case of Theorem 2.2
when M = 1.

From Theorem 2.1, we can get the result of Corollary 2.2 as follows.

Corollary 2.2. Let {Xn, n ≥ 1} be a sequence of identically distributed and
extended acceptable random variables with Eeδ|X1| < ∞ for some δ > 0. Set
ϵn = 2(Kα(log n)/n)1/2, where α > 0 and K = 2(E|X1|4)1/2E(eδ|X1|). Then
there exists a constant M > 0 such that for α > 1

∞∑
n=1

P |Sn − ESn| > nϵn) ≤ 2M
∞∑

n=1

exp(−α log n) < ∞.

Proof. Let ϵn = 2(Kα(log n)/n)1/2, where α > 1 andK = 2(E|X1|4)1/2E(eδ|X1|).
Then ϵn/(Kδ) ≤ 1 for all large n. Hence, the result follows directly from Theo-
rem 2.1. �

Theorem 2.2. Let {Xn, n ≥ 1} be a sequence of extended acceptable random
variables with Eeδ|Xi| < ∞ for some δ > 0 and for each i ≥ 1 and {gn, n ≥ 1}
be a sequence of positive numbers with Gn =

∑n
i=1 gi for each n ≥ 1. For fixed

n ≥ 1, if there exists a positive number T such that

E exp(tXi) ≤ exp(
1

2
git

2), 0 ≤ t ≤ T, i = 1, 2, · · · , n, (2.6)

then, for some constant M > 0

P (Sn ≥ x) ≤

{
M exp(− x2

2Gn
), 0 ≤ x < GnT,

M exp(−Tx
2 ), x ≥ GnT.

(2.7)

Proof. For each x, by Markov’s inequality we see that

P (Sn ≥ x) ≤ exp(−tx)E exp(tSn), t > 0. (2.8)
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By (1.4) there exists a constant M > 0 such that for 0 < t ≤ T

E exp(tSn) = E(
n∏

i=1

exp(tXi)) ≤ M
n∏

i=1

E exp(tXi) ≤ M exp(
Gnt

2

2
). (2.9)

It follows from (2.8) and (2.9) that

P (Sn ≥ x) ≤ M inf
0<t≤T

exp(
Gnt

2

2
− tx) = M exp( inf

0<t≤T
(
Gnt

2

2
− tx)). (2.10)

For fixed x ≥ 0, if T > x
Gn

≥ 0, then

exp( inf
0<t≤T

(
Gnt

2

2
− tx)) = exp(− x2

2Gn
) (2.11)

and if T < x
Gn

, then

exp( inf
0<t≤T

(
Gnt

2

2
− tx)) = exp(

Gnt
2

2
− Tx) ≤ exp(−Tx

2
). (2.12)

From (2.10)-(2.12), we obtain the result of (2.7). �

Theorem 2.3. Let {Xn, n ≥ 1} be a sequence of extended acceptable random
variables with EXi = 0, Eeδ|Xi| < ∞ for some δ > 0 and |Xi| ≤ b for each
i ≥ 1, where b is a positive constant. Denote B2

n =
∑n

i=1 EX2
i for each n ≥ 1.

Then, for any ϵ > 0 and for some constant M > 0

P (Sn ≥ ϵ) ≤ M exp{− ϵ2

2(2B2
n + bϵ)

} (2.13)

and

P (|Sn| ≥ ϵ) ≤ 2M exp{− ϵ2

2(2B2
n + bϵ)

}. (2.14)

Proof. Clearly, for any 0 < t ≤ 1
b |tXi| ≤ 1 by assumption |Xi| ≤ b. Thus, by

the fact that ey > 1 + y, y > 0 we obtain

E exp |tXi| = 1 +

∞∑
n=2

E(tXi)
n

n!
≤ 1 + t2EX2

i ≤ exp(t2EX2
i ). (2.15)

By Markov’s inequality, Definition 1.1 and (2.15)

P (Sn ≥ ϵ) ≤ exp(−tϵ)E exp(tSn)

≤ Me−tϵ
n∏

i=1

E exp(tXi) ≤ M exp(−tϵ+ t2B2
n),

which yields (2.13) by taking t = ϵ/(2B2
n + bϵ). Since {−Xn, n ≥ 1} is also a

sequence of extended acceptable random variables, it follows from (2.13) that

P (Sn ≤ −ϵ) = P (−Sn ≥ ϵ) ≤ M exp{− ϵ2

2(2B2
n + bϵ)

}. (2.16)

Combining (2.13) and (2.16) yields (2.14). �
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Theorem 2.4. Let {Xn, n ≥ 1} be a sequence of extended acceptable random
variables. If there exist sequences of real numbers {an, n ≥ 1} and {bn, n ≥ 1}
such that ai ≤ Xi ≤ bi for each i ≥ 1. Then, for any ϵ > 0 and some constant
M > 0

P (Sn − ESn ≥ nϵ) ≤ M exp{− 2n2ϵ2∑n
i=1(bi − ai)2

} (2.17)

and

P (|Sn − ESn| ≥ nϵ) ≤ 2M exp{− 2n2ϵ2∑n
i=1(bi − ai)2

}, n ≥ 1 (2.18)

Proof. For any h > 0 by Markov’s inequality, we have

P (Sn − ESn ≥ nϵ) ≤ E exp[h(Sn − ESn − nϵ)] (2.19)

It follows from Definition 1.1 that for some constant M > 0

E exp[h(Sn − ESn − nϵ)] = exp(−hnϵ)E

n∏
i=1

exp[h(Xi − EXi)]

≤ M exp(−hnϵ)
n∏

i=1

exp[h(Xi − EXi)]. (2.20)

Hoeffding(1963) proved that if a ≤ X ≤ b, then for any h > 0

E exp[h(X − EX)] ≤ exp[h2(b− a)2/8]. (2.21)

By (2.20) and (2.21)

P (Sn − ESn ≥ nϵ) ≤ M exp(−hnϵ+
1

8
h2

n∑
i=1

(bi − ai)
2) (2.22)

It is easily seen that the right hand side of (2.22) has its minimum at h =
4nϵ∑n

i=1(bi−ai)2
. Inserting this value in (2.22) we obtain (2.17). Since {−Xn} is

also a sequence of extended acceptable random variables by (2.17) we obtain

P (Sn − ESn ≤ −nϵ) ≤ M exp{− 2n2ϵ2∑n
i=1(bi − ai)2

}, n ≥ 1. (2.23)

From (2.17) and (2.21), we obtain the result of (2.18). �

3. Complete convergence for extended acceptable random variables

Theorem 3.1. Let {Xn, n ≥ 1} be a sequence of identically distributed and
extended acceptable random variables with EX1 = 0 and Eeδ|X1| < ∞ for some
δ > 0. Then n−1(Sn − ESn) → 0 completely as n → ∞.

Proof. By using Theorem 2.1, we can be obtained the result of Theorem 3.1 and
the proof is omitted. �
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Theorem 3.2. Let {Xn, n ≥ 1} be a sequence of extended acceptable random
variables with EXi = 0, Eeδ|Xi| < ∞ for some δ > 0 and |Xi| ≤ b for each
i ≥ 1, where b is a positive constant. If

∑∞
i=1 EX2

i < ∞ then for any r > 0

n−rSn → 0 completely as n → ∞. (3.1)

Proof. It follows from (2.14) that for any ϵ > 0 and some constant M > 0

∞∑
n=1

P (|Sn| ≥ nrϵ) ≤ 2M
∞∑

n=1

exp{− n2rϵ2

2(2
∑n

i=1 EX2
i + bnrϵ)

}

≤ 2
∞∑

n=1

[exp(−C)]n
r

< ∞,

which yields (3.1), where C is a positive number not depending on n. �

Theorem 3.3. Let {Xn, n ≥ 1} be a sequence of extended acceptable random
variables with Eeδ|Xi| < ∞ for some δ > 0 and |Xi| ≤ C < ∞ for each i ≥ 1,
where C is a positive constant. Then, for any r > 1

2

n−r(Sn − ESn) → 0 completely as n → ∞.

Proof. For any ϵ > 0 and some constant M > 0 we obtain

∞∑
n=1

P (|Sn − ESn| ≥ nrϵ) ≤ 2M
∞∑

n=1

[exp(− ϵ2

2C2
)]n

2r−1

< ∞

by Theorem 2.4. Hence, n−r(Sn − ESn) → 0 completely as n → ∞. �
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