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GENERALIZATION OF REGULARITY AND S-UNITALITY
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Abstract. In this paper, we introduce more general concepts of regularity
and S-unitality, that is, π-regularity and πS-unitality and then give some
examples in near-rings, also investigate their characterization and proper-

ties.
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1. Introduction

In 1980, Mason introduced the notions of left regularity, right regularity and
strong regularity of near-rings [6, 7]. Moreover, in 1970’s and 1986, the concept
of π-regularity was studied by Ligh, Heatherly and Hongan [2, 4, 5].

The concepts of Von Neumann regularity and π-regularity in near-ring theory
are the same meaning as in ring theory.

Throughout this paper, a near-ring R means a right near-ring [8]. An element
d in R is called distributive if d(a+ b) = da+ db for all a and b in R.

We will use the following notations: Given a near-ring R, R0 = {a ∈ R | a0 =
0} which is called the zero symmetric part of R, Rc = {a ∈ R | a0 = a} which is
called the constant part of R. The set of all distributive elements in R is denoted
by Rd.

Obviously, we see that R0 and Rc are subnear-rings of R, but Rd is a semi-
group under multiplication. Clearly, near-ring R is zero symmetric, in case
R = R0 also, in case R = Rc, R is called a constant near-ring and in case
R = Rd, R is called a distributive near-ring.

For notation and basic results, we shall refer to Pilz [8].
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2. Results

For a near-ring R, an element a ∈ R is called nilpotent if there exists a positive
integer n such that an = 0. Also, a subset S ⊂ R is called nilpotent if there
exists a positive integer n such that Sn = 0 and S ⊂ R is called nil if every
element in S is nilpotent, which are introduced in [8]. Clearly, every nilpotent
subset of R is nil.

Also, a subset H of R together with (i) RH ⊂ H and (ii) HR ⊂ H is called
an R-subset of R. If this H satisfies (i) then it is called a left R-subset of R, and
H satisfies (ii) then it is called a right R-subset of R.

Also, we say that R is reduced if R has no nonzero nilpotent elements, that
is, for each a in R, an = 0, for some positive integer n implies a = 0. McCoy
proved that R is reduced iff for each a in R, a2 = 0 implies a = 0.

A near-ring R is called left S-unital (resp. right S-unital) if for each a in R,
a ∈ Ra (resp. a ∈ aR), such an element a is called left S-unital (resp. right
S-unital).

R is called S-unital, if R is both left S-unital and right S-unital. Every near-
ring with left identity or identity is clearly left S-unital. Also every regular
near-ring is S-unital.

We shall use the phrase ”∀a ∈ R, ∃e2 = e ∈ R” instead of ”for every element
a in R, there exists some element e2 = e in R” for convenience in the following.

Now, we begin with to show the characterization of regularity and S-unitality
in near-rings, also consider their application.

Proposition 2.1. Let R be a near-ring. Then R is regular if and only if R has
Ra = Re” and R is left S-unital.

Proof. Suppose that R is regular. Then for any a ∈ R, there exists x ∈ R
such that a = axa. Since xa and ax are idempotents in R, taking xa = e,
Ra = Raxa = Rae ⊂ Re and Re = Rxa ⊂ Ra. Hence Ra = Re. Obviously, R
is left S-unital.

Conversely, assume that R has the given condition ”∀a ∈ R, ∃e2 = e ∈ R such
thatRa = Re” andR is left S-unital. Then S-unitality implies that a ∈ Ra = Re,
so that there exists y ∈ R such that a = ye. From this condition, we see that
e = ee ∈ Re = Ra, so that there exists x ∈ R such that e = xa. Thus we obtain
that a = ye = yee = yexa = axa. Consequently, R is regular. �

Corollary 2.2. [1], [3] Let R be a near-ring with identity. Then R is regular if
and only if R has the condition ”∀a ∈ R, ∃e2 = e ∈ R such that Ra = Re”.

The following statements are an application of Proposition 1.

Proposition 2.3. Every regular near-ring R has no non-zero nil left R-subset.

Proof. Let R be a regular near-ring and K be a nil left R-subset of R. It suffices
to show thatK = {0}. Indeed, let a ∈ K. Since R is regular, R has the condition
”∃e2 = e ∈ R such that Ra = Re” and R is left S-unital, by Proposition 1. Since
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K is a left R-subset, we have that a ∈ Ra ⊂ K. On the other hand, since K is
nil, there exists positive integer m, such that am = 0.

Next, from the condition e = ee ∈ Re = Ra ⊂ K, also there exists positive
integer n, such that e = en = 0. From the above two conditions, we have a ∈ R0,
so that a = r0 for some r ∈ R. Consequently, a = r0 = (r0)m = am = 0. That
is, K = {0}. �

Corollary 2.4. [1] Every regular near-ring R with identity has no non-zero nil
left R-subgroup.

From now on, we introduce more general concepts of regularity and S-unitality
and then give some examples in near-rings, also investigate their characterization
and properties.

Every regular near-ring is π-regular, but not conversely as following examples.

Example 2.5.
(1) Let R = {0, a, b, c} be an additive Klein 4-group. This is a near-ring

with the following multiplication table (p. 408 [8]):
· 0 a b c

0 0 0 0 0
a 0 0 a a
b 0 a c b
c 0 a b c


This near-ringR is a zero-symmetric near-ring with identity c. Moreover,
R is π-regular, but not regular. Indeed, 0 = 0a0, a2 = a2ba2, b4 = b4ab4,
c2 = c2cc2, but a is not a regular element.

(2) Let R = Z4 = {0, 1, 2, 3} be an additive group of integers modulo 4 and
define multiplication as follows:

· 0 1 2 3

0 0 0 0 0
1 0 3 0 1
2 0 2 0 2
3 0 1 0 3


This near-ring R is a zero-symmetric near-ring without identity. More-
over, R is π-regular, but not regular. Indeed, 0 = 0a0, a2 = a2ba2,
b4 = b4ab4, c2 = c2cc2, but a is not a regular element.

Finally, we can define a general concept of left S-unitality.
A near-ring R is called left πS-unital (resp. right πS-unital) if for each a in

R, there exists a positive integer n such that an is a S-unital element, that is,
an ∈ Ran (resp. an ∈ anR), such an element a is called left πS-unital (resp.
right πS-unital).

R is called πS-unital, if R is both left πS-unital and right πS-unital.
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Also, every left S-unital (resp. right S-unital) near-ring is left πS-unital (resp.
right πS-unital), but not conversely as following remark.

Remark 2.1. In Examples 5 (1), clearly, R is a left S-unital near-ring. But
in Examples 5 (1), R is left πS-unital, indeed, 0 = 1 · 0 = 2 · 0 = 3 · 0 ∈ R0,
1 = 3 · 1 ∈ R1, 22 = 0 = 0 · 22 ∈ R22 and 3 = 3 · 3 ∈ R3. But this near-ring R is
not S-unital, because 2 is not a left S-unital element.

The statements Proposition 1 and Corollary 2 can be extended on π-regular
and left πS-unital near-rings as following.

Theorem 2.6. Let R be a near-ring. Then R is π-regular if and only if R has
the condition ”∀a ∈ R, ∃e2 = e ∈ R and ∃n ∈ Z+ such that Ran = Re”, and R
is left πS-unital.

Proof. Suppose that R is π-regular. Then for any a ∈ R, there exist a positive
integer n and x ∈ R such that an = anxan. This equality implies that an ∈ Ran.
Hence R is left πS-unital.

Next, since xan and anx are idempotent elements in R, putting xan = e,
Ran = Ranxan ⊂ Rxan = Re and Re = Rxan ⊂ Ran. Hence Ran = Re.

Conversely, assume that R has the given condition ”∀a ∈ R, ∃e2 = e ∈ R and
∃n ∈ Z+ such that Ran = Re”, and R is left πS-unital. Then the πS-unitality
implies that an ∈ Ran = Re, so that there exists y ∈ R such that an = ye.....(1).
On the other hand, we see that e = ee ∈ Re = Ran, so that there exists x ∈ R
such that e = xan.....(2). From this two conditions (1) and (2), we obtain that
an = ye = yee = yexan = anxan. Therefore, R is a πS-regular near-ring. �
Corollary 2.7. Let R be a near-ring with identity. Then R is π-regular if and
only if R has the condition ”∀a ∈ R, ∃e2 = e ∈ R and ∃n ∈ Z+ such that
Ran = Re”.

For any near-ring R, the center of R is denoted by the set

Z(R) = {x ∈ R | ax = xa,∀a ∈ R}.
Note that when R is distributive, that is, R = Rd, Z(R) is a subnear-ring of

R. In Appendix of (pp. 421-424 [8]), we can find some distributive π-regular
near-rings which are not additive abelian .

Theorem 2.8. The center of a distributive π-regular near-ring is also π-regular.

Proof. Let R be a distributive π-regular near-ring, and let a ∈ Z(R). Then
∃x ∈ R and ∃n ∈ Z+ such that an = anxan. From this equality, we have that
an = anxan = anxanxan. We will show that xanx ∈ Z(R). Then our claim is
done. Indeed, let t ∈ R. Since a ∈ Z(R), also an ∈ Z(R). Thus we can deduce
that

t(anx) = (tan)x = (ant)x = an(tx) = anxan(tx) = anx(tx)an = an(xtx)an

and

(anx)t = (xan)t = x(ant) = x(tan) = xt(anxan) = (xtan)xan = an(xtx)an.
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Hence anx ∈ Z(R). Similarly, we can obtain that xan ∈ Z(R).
Thus,

t(xanx) = t(anxx) = (tanx)x = (anxt)x = x(ant)x

and
(xanx)t = x(anx)t = xt(anx) = x(tan)x = x(ant)x.

This implies that t(xanx) = (xanx)t, that is, xanx ∈ Z(R). Hence Z(R) is
π-regular. �
Corollary 2.9. The center of a distributive regular near-ring is also regular.
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