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SOME GLOBAL CONVERGENCE PROPERTIES OF THE

LEVENBERG-MARQUARDT METHODS WITH LINE

SEARCH†

SHOU-QIANG DU

Abstract. In this paper, we consider two kinds of the Levenberg-Marquardt

method for solve a system of nonlinear equations. We use line search on
every iteration to guarantee that the Levenberg-Marquardt methods are
globally convergent. Under mild conditions, we prove that while the de-
scent condition can be satisfied at the iteration of the Levenberg-Marquardt

method, the global convergence of the method can be established.
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1. Introduction

In this paper, the Levenberg-Marquardt method is designed to solve the fol-
lowing nonlinear equations

F (x) = 0, (1.1)

where F : Rn → Rm is continuously differentiable and the Jacobian J(xk) is
Lipschitz continuous on some neighbor of x∗ ∈ X∗(We assume that the solution
set of (1.1) is nonempty and denoted X∗). Nonlinear equations arise in various
applications [1-4], such as some monotone variational inequality problems can
be converted into (1.1) and et al. The iterative methods for solving (1.1) have
been widely studied by many authors (see [1-7]). Due to its simplicity and
global convergence, the Levenberg-Marquardt method has played a special role
for solving the above nonlinear equations (see [5-8]). The classical Levenberg-
Marquardt method for (1.1) computes dk by

dk = −(J(xk)
TJ(xk) + µkI)

−1J(xk)
TF (xk), (1.2)
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where µk ≥ 0 is a parameter being updated from iteration to iteration, such as
µk = ∥F (xk)∥δ, δ ∈ [1, 2] and µk = ∥F (xk)∥2, in [7,8].

In this paper, we only consider the globalization of the Levenberg-Marquardt
method. Similar to unconstrained optimization problems, line search conditions
are used to guarantee the global convergence. A line search algorithms computes
a search direction at the k-th iteration and computes the next iterate by xk+1 =
xk+αkdk, where αk is computed by different line search techniques, such as Wolfe
line search, Armijo line search and some Wolfe-type line search, Armijo-type line
search, et al (see [9-12]). Considering that the line search plays an important role
in the proof of the global convergence of the Levenberg-Marquardt method, we
give an other point of view to guarantee the global convergence of the Levenberg-
Marquardt method.

The paper is organized as follows. In Section 2, we give some kinds of
line search conditions for ensuring the global convergence of the Levenberg-
Marquardt method. In Section 3, the Levenberg-Marquardt methods and their
convergence results are given. Finally, we give some final remarks.

Notation. In the following paper, a quantity with a subscript k denotes that
quantity evaluated at xk, the vector norm is the l2 norm.

2. Preliminaries

In this section, we give two kinds of inexact line search(see [9-10]), which can
be used in the following Levenberg-Marquardt methods. The inexact line search
conditions are based on the reduction of the following merit function

Ψ(x) =
1

2
∥F (x)∥2.

Line search I
The inexact Wolfe type line search requires αk to satisfy

∥F (xk)∥2 − ∥F (xk + αkdk)∥2 ≥ ρα2
k∥dk∥2, (2.1)

F (xk + αkdk)
TJ(xk + αkdk)dk ≥ −2σαk∥dk∥2, (2.2)

where 0 < ρ < σ < 1.

Line search II
The inexact Wolfe type line search requires αk to satisfy

∥F (xk + αkdk)∥2 − ∥F (xk)∥2 ≤ max{δαkF (xk)
TJkdk,−ρα2

k∥dk∥2}, (2.3)

F (xk + αkdk)
TJ(xk + αkdk)dk ≥ max{δF (xk)

TJkdk,−2σαk∥dk∥2}, (2.4)

where 0 < δ < σ < 1, 0 < ρ < 1.

Assumption 2.1 Assume that the Jacobian J(x) is Lipschitz continuous on
some neighborhood of x∗ ∈ X∗, i.e.

∥J(y)− J(x)∥ ≤ L∥y − x∥,
where x, y ∈ N(x∗), L is a positive constant.
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Normally, the search direction dk is chosen when it is a descent direction
unless ∇Ψ(xk) = 0. So we can see dTk∇Ψ < 0, if ∇Ψ ̸= 0. Based on the above
analysis, we get the following Lemmas.

Lemma 2.1. Suppose that Assumption 2.1 holds and that dTk∇Ψ < 0, the for-
mula (2.1) and (2.2) imply that

∥F (xk+1)∥2 ≤ ∥F (xk)∥2 − ρ(
1

2σ + L
)2
(FT

k Jkdk)
2

∥dk∥2
. (2.5)

Proof. By the conditions of the lemma, we get

(FT
k−1Jk−1 − FT

k Jk)
T dk ≥ −FT

k Jkdk − 2σαk∥dk∥2,

(FT
k−1Jk−1 − FT

k Jk)
T dk ≤ Lαk∥dk∥2,

so
(2σ + L)αk∥dk∥2 ≥ −FT

k Jkdk,

(
1

2σ + L
)2
(FT

k Jkdk)
2

∥dk∥2
≤ α2

k∥dk∥2,

and

α2
k∥dk∥2 ≤ 1

ρ
(∥F (xk)∥2 − ∥F (xk + αkdk)∥2).

From the above inequations, we get (2.5). �
Corollary 2.2. Suppose that the assumptions of Lemma 2.1 holds, the formula
(2.3) and (2.4) also imply that (2.5) holds.

3. Levenberg-Marquardt methods and their convergence results

In this section, we describe two Levenberg-Marquardt methods for (1.1). The
global convergence of the two methods are also given.

Levenberg-Marquardt Method(I).
Step 1. Given x0 ∈ Rn, δ ∈ [1, 2], η ∈ (0, 1), k := 0.
Step 2. If ∥∇Ψ∥ = 0 then stop. Otherwise set µk = ∥Fk∥δ, compute dk by (1.2).
Step 3. If dk satisfies ∥F (xk + dk)∥ ≤ η∥F (xk)∥, set xk+1 = xk + dk, otherwise
compute xk+1 by xk+1 = xk +αkdk, where αk is computed by Line Search I(see
(2.1) and (2.2)). Let k := k + 1, and go to Step 2.

Levenberg-Marquardt Method(II).
Step 1. Given x0 ∈ Rn, δ ∈ [1, 2], η ∈ (0, 1), k := 0.
Step 2. If ∥∇Ψ∥ = 0 then stop. Otherwise set µk = ∥Fk∥δ, compute dk by (1.2).
Step 3. If dk satisfies ∥F (xk + dk)∥ ≤ η∥F (xk)∥, set xk+1 = xk + dk, otherwise
compute xk+1 by xk+1 = xk+αkdk, where αk is computed by Line Search II(see
(2.3) and (2.4)). Let k := k + 1, and go to Step 2.

Based upon the above analysis, similar to [7], we also can get the following
global convergence results.
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Theorem 3.1. Suppose that Assumption 2.1 holds and {xk} is a sequence gener-
ated by the above Levenberg-Marquardt Method(I). Then any accumulation point
x∗ of {xk} is a stationary points of Ψ.

Proof. Since ∇Ψ(xk) ̸= 0 implies dk ̸= 0, we have

∇Ψ(xk)
T dk = −((J(xk)

TJ(xk) + µkI)dk)
T dk < 0.

Then follows from ∥F (xk + dk)∥ ≤ η∥F (xk)∥ and (2.1), (2.2), we know that
{Ψ(xk)} is monotonically decreasing. If ∥F (xk)∥ → 0, any accumulation point
of {xk} is a solution of Ψ. Otherwise, if ∥F (xk)∥ → ζ > 0, so ∥Fk+1∥ ≤ η∥Fk∥
holds for finitely many times. We can see that (2.5) is satisfied only for all large
k. By (1.2) and (2.5), we know

(FT
k Jkdk)

2 = (dTk (J
T
k Jk + µkI)dk)

2 ≥ ζ2δ∥dk∥4. (3.1)

From (2.5), (3.1), we can see

lim
k→∞

∥dk∥ = 0.

The above limit and (1.2) imply that J(x∗)F (x∗) = 0. So we complete the
proof. �

By Corollary 2.2, we can easily get the following global convergence of Levenberg-
Marquardt Method(II).

Theorem 3.2. Suppose that Assumption 2.1 holds and {xk} is a sequence gen-
erated by the above Levenberg-Marquardt Method(II). Then any accumulation
point x∗ of {xk} is a stationary points of Ψ.

Proof. By Assumption 2.1, (2.3) and (2.4), we can get (3.1). Since it is a straight-
forward modification of the proof of Theorem 3.1, we omit the proof. �

4. Final remarks

In the above section, we give some global convergence properties of Levenberg-
Marquardt method under inexact line search for (1.1). From the global conver-
gence analysis of Levenberg-Marquardt Method(I) and Levenberg-Marquardt
Method(II), we can see that (2.5) is used to prove the global convergence of
Levenberg-Marquardt methods. So we can get the global convergence results
of Levenberg-Marquardt method for any line search, which can get (2.5) under
Assumption 2.1, Such as we can also get (2.5) by the following strong Wolfe
line search conditions and generalized wolfe line search conditions and exact line
search [12].

Line search III
The strong Wolfe line search requires αk to satisfy

∥F (xk + αkdk)∥2 ≤ ∥F (xk)∥2 + β1αkF
T
k Jkdk, (4.1)

|F (xk + αkdk)
TJ(xk + αkdk)dk| ≤ −β2F

T
k Jkdk, (4.2)

where 0 < β1 ≤ β2 < 1.
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Line search IV
The generalized Wolfe line search requires αk to satisfy (4.1) and

β3F
T
k Jkdk ≤ F (xk + αkdk)

TJ(xk + αkdk)dk ≤ −β4F
T
k Jkdk, (4.3)

where 0 < β1 ≤ β3 < 1, β4 ≥ 0.

Line search V
The exact line search requires αk to satisfy

∥F (xk + αkdk)∥2 = min
α≥0

∥F (xk + αdk)∥2. (4.4)

Remark 4.1. Suppose that Assumption 2.1 holds and that dTk∇Ψ < 0. Con-
sider the formula (4.1) and (4.2) or (4.1) and (4.3) or (4.4), then we can get
(2.5).

Remark 4.2. If we replace Line search I in Levenberg-Marquardt Method(I)
by Line search III or Line search IV or Line search V, we also can get the global
convergence result of Levenberg-Marquardt Method(I).

We also can use the above results to solve the linear complementarity prob-
lem(LCP)(see [13-17]), which is to find x ∈ Rn such that

x ≥ 0,Mx+ q ≥ 0, xT (Mx+ q) = 0,

where M is an n × n matrix and q is a n-dimension vector. Base on the F-B
function

ϕ(a, b) =
√
a2 + b2 − a− b

in [13], we consider the following reformulation of the linear complementarity
problem(LCP)

F (x) =

 ϕ(x1, (Mx+ q)1)
...

ϕ(xn, (Mx+ q)n)

 = 0.

Choosing Jk ∈ ∂F (xk), we can compute dk by the following linear system

(JT
k Jk + µkI)d = −∇Ψ(xk).

Since Ψ(x) = 1
2∥F (x)∥2 is differentiable, when M is a P0 matrix, any stationary

point of Ψ is a solution of the linear complementarity problem(LCP). Using the
analysis and results obtained in the above, we can get the following result.

Remark 4.3. Suppose that M is a P0 matrix, then any accumulation point of
the sequence generated by the above Levenberg-Marquardt methods is a solution
of the linear complementarity problem(LCP).
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