
J. Appl. Math. & Informatics Vol. 31(2013), No. 1 - 2, pp. 285 - 297
Website: http://www.kcam.biz

BLOWUP PROPERTIES FOR PARABOLIC EQUATIONS

COUPLED VIA NON-STANDARD GROWTH SOURCES†

BINGCHEN LIU∗ AND ZHENZHEN HONG

Abstract. This paper deals with parabolic equations coupled via non-
standard growth sources, subject to homogeneous Dirichlet boundary con-
ditions. Three kinds of necessary and sufficient conditions are obtained,

which determine the complete classifications for non-simultaneous and si-
multaneous blowup phenomena. Moreover, blowup rates are given.

AMS Mathematics Subject Classification : 35K05, 35K60, 35B40, 35B33.
Key words and phrases : non-simultaneous blowup, simultaneous blowup,

blowup rate, non-standard growth sources.

1. Introduction

In this paper, we consider the following nonlocal parabolic problem
ut = ∆u+

∫
Ω

um(x)(x, t)ep(x)v(x,t)dx, (x, t) ∈ Ω× (0, T ),

vt = ∆v +

∫
Ω

uq(x)(x, t)en(x)v(x,t)dx, (x, t) ∈ Ω× (0, T ),

u(x, t) = v(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),
u(x, 0) = u0(x), v(x, 0) = v0(x) ≥, ̸≡ 0, x ∈ Ω,

(1)

where Ω ⊂ RN with smooth boundary ∂Ω; m(x), n(x), p(x), q(x) ≥ 0 are contin-
uous in Ω; initial data u0(x), v0(x) satisfy the compatibility conditions on ∂Ω; T
denotes the maximal existence time of the solutions. The local existence of clas-
sical solutions to (1) is well-known (see, for example, [1, 2]). For the uniqueness
of classical solutions, we assume m(x), q(x) > 1. The nonlinear parabolic prob-
lems like (1) come from several branches of applied mathematics and physics,
such as, flows of electrorheological or thermo-rheological fluids [3, 4, 5], and the
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processing of digital images [6, 7, 8]. For more details, we refer the readers to
books [9, 10].

Li, Huang, and Xie [11] considered the nonlocal parabolic equations

ut = ∆u+

∫
Ω

um(x, t)vn(x, t)dx, vt = ∆v +

∫
Ω

up(x, t)vq(x, t)dx (2)

in Ω×(0, T ), with null Dirichlet boundary conditions, where constantsm,n, p, q ≥
0. They obtained that the solutions of system (2) blow up under large initial
data if m > 1, or q > 1, or pn > (1 −m)(1 − q), and also determined blow-up
rates of solutions. There are many other results for parabolic equations with
nonlocal nonlinearities (see, for example, [12, 13, 14, 15]).

Pinasco [16] in 2009 studied the homogeneous Dirichlet problem of

ut = ∆u+ a(x)

∫
Ω

up(x)(x, t)dx, (x, t) ∈ Ω× (0, T ), (3)

subject to null Dirichlet boundary conditions, where the variable exponent p(x)
and a(x) satisfy 1 < p− ≤ p(x) ≤ p+ < +∞ and 0 < c− ≤ a(x) ≤ c+ < +∞.
Here, p+ = supx∈Ω p(x) and p− = infx∈Ω p(x). The authors [16] obtained u
blows up at finite time T in the sense of ∥u(·, t)∥L∞(Ω) → +∞ as t → T for large
initial data. Moreover, blowup solution for homogeneous Dirichlet problem of
ut = ∆u+ a(x)up(x) is studied.

Antontsev and Shmarev [17] discussed the evolution p(x)-Laplace parabolic
equation

ut = div(a(x, t)|∇u|p(x)−2∇u) + b(x, t)|u|σ(x,t)−2u, (x, t) ∈ Ω× (0, T ),

subject to null Dirichlet boundary condition, with the variable functions p(x),
σ(x, t) ∈ (1,+∞). If p(x) ≡ 2, a(x, t) ≡ 1, and b(x, t) ≥ b− > 0 (i.e. the
semilinear equation), blow-up happens if the initial data are sufficiently large
and either minx∈Ω σ(x, t) = σ−(t) > 2 for all t > 0, or σ−(t) ≥ 2, σ−(t) ↘
2 as t → ∞ and

∫∞
1

es(2−σ−(s))ds < ∞. For the Laplace equation with the
exponents p(x) and σ(x), they proved that every solution, corresponding to
large initial data, exhibits blow-up if b(x, t) ≥ b− > 0, at(x, t) ≤ 0, bt(x, t) ≥ 0,
minx∈Ω σ(x) > 2, maxx∈Ω p(x) ≤ minx∈Ω σ(x).

In work [18], Ferreira, Pablo, Pérez-Llanos, and Rossi discussed the homoge-
neous Dirichlet problem of ut = ∆u + up(x) and also its corresponding Cauchy
problem in RN . They obtained some interesting results for nonnegative p(x) as
follows, for Ω = Rn or bounded Ω, if p+ > 1, there exist blow-up solutions, while
if p+ ≤ 1, then every solution is global. For the Cauchy problem, if p− > 1+2/N ,
there exist global nontrivial solutions; If 1 < p− < p+ ≤ 1 + 2/N , all solutions
blow up; If p− < 1 + 2/N < p+, there are functions p(x) such that the problem
possesses global nontrivial solutions and functions p(x) such that all solutions
blow up. Two more results of global solutions were obtained: If Ω ⊂ Br(x0) for

some x0 ∈ RN and r <
√
2N , then the problem possesses global nontrivial solu-

tions, regardless of the exponent p(x); If p− > 1, then there are global solutions,
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regardless of the size of Ω. The authors of [18] found out some new phenomena
in bounded domains, which are quite different from the corresponding parabolic
problems without variable exponents: there are suitable functions p(x) and suit-
able bounded domains Ω such that positive solutions blow up in finite time for
any initial data. By the way, the homogeneous Dirichlet problem of parabolic
equations

ut = ∆u+ vp(x), vt = ∆v + uq(x), (x, t) ∈ Ω× (0, T ),

have been firstly obtained by Bai and Zheng [19]. Some criteria are established
for distinguishing global and non-global solutions of the problem, depending or
independent on initial data. Especially, they extended the Fujita-type result of
[18] to the coupled equations case.

For the nonlocal non-standard growth problem (1), how to classify blowup
solutions by using variable exponents and how to represent their blowup rates
are worthy of being studied. In this paper, we firstly deal with blowup criteria of
(1), and then identify simultaneous and non-simultaneous blowup under suitable
assumptions on the initial data and the variable exponents. Finally, we discuss
blowup rates for all kinds of blowup solutions. The present paper is arranged
as follow. In the next section, we show the main results of the present paper.
At sections 3 and 4, the classification for blowup solutions and blowup rates are
proved, respectively.

2. Main results

The following proposition shows the criteria for blowup solutions. Denote
m+ = supx∈Ω m(x), n+ = supx∈Ω n(x), p+ = supx∈Ω p(x), q+ = supx∈Ω q(x).

Proposition 2.1. Under the assumptions m+ > 1, n+ > 0, p+ > 0 and q+ > 1,
the classical solutions of (1) blow up in finite time for large initial data.

In the sequel, we deal with the blowup solutions under the assumption

∆u0 + (1− εφ)

∫
Ω

u
m(x)
0 ep(x)v0dx, ∆v0 + (1− εφ)

∫
Ω

u
q(x)
0 en(x)v0dx ≥ 0, (4)

where constant ε ∈ (0, 1), x ∈ Ω, φ and λ are the first eigenfunction and the
first eigenvalue respectively of

−∆φ = λφ in Ω, φ = 0 on ∂Ω, (5)

normalized by
∫
Ω
φ(x)dx = 1 and φ > 0 in Ω. By the comparison principle,

ut, vt ≥ 0. We assume u(x, t), v(x, t) and m(x), n(x), p(x), q(x) attain their
maxima at the same point x0 ∈ Ω and the measure of the sub-domain of Ω
where variable exponents reach their maxima is not zero. It can be found that,
if the classical solution (u, v) and the variable exponents are radially symmetric
and non-increasing in r = |x| ∈ (0, R), then the above assumption can be met.

Now, we state the complete classifications for non-simultaneous and simul-
taneous blowup by three theorems. The first one determines the existence of
non-simultaneous blowup.
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Theorem 2.2. (i) There exists initial data such that u blows up alone if and
only if m+ > q+ + 1. (ii) There exists initial data such that v blows up alone if
and only if n+ > p+.

Corollary 2.3. Any blowup must be simultaneous if and only if m+ ≤ q+ + 1
and n+ ≤ p+.

The second shows the exponent regions for non-simultaneous blow-up only.

Theorem 2.4. (i) Any blowup must be u blowing up alone if and only if m+ >
q+ + 1 and n+ ≤ p+. (ii) Any blowup must be v blowing up alone if and only if
m+ ≤ q+ + 1 and n+ > p+.

The third one presents an interesting exponent region where three kinds of
blowup phenomena may occur.

Theorem 2.5. Both simultaneous and non-simultaneous blowup may occur if
and only if m+ > q+ + 1 and n+ > p+.

Theorems 2.2–2.5 yield the optimal classification for blowup solutions of (1).
In the coexistence region {m+ > q+ + 1, n+ > p+}, both simultaneous and
non-simultaneous blow-up may occur, sensitively depending on the choosing of
initial data: roughly speaking, larger u0 (v0) and smaller v0 (u0) lead to the single
component blowup of u (v), and simultaneous blowup occurs under somewhat
balanced u0 and v0.

The next theorem covers all possible simultaneous blowup of solutions in the
two related regions {m+ ≤ q+ + 1, n+ ≤ p+} and {m+ > q+ + 1, n+ > p+}.

Theorem 2.6. The following blowup rates hold on any compact subset of Ω.

(i) If m+ < q++1 and n+ < p+, or m+ > q++1, n+ > p+ and simultaneous
blowup occurs, then

c ≤ u(x, t)(T − t)
p+−n+

p+q+−n+(m+−1) ≤ C, c ≤ v(x, t)

| log(T − t)|
≤ C.

In particular, c ≤ ev(x0,t)(T − t)
q++1−m+

p+q+−n+(m+−1) ≤ C.
(ii) If m+ < q+ + 1 and n+ = p+, then

c ≤ uq++1−m+(x, t)

| log(T − t)|
≤ C, c ≤ v(x, t)

| log(T − t)|
≤ C. (6)

In particular,

c ≤ en+v(x0,t)v
q+

q++1−m+ (x0, t)(T − t) ≤ C. (7)

(iii) If m+ = q+ + 1 and n+ < p+, then

c ≤ log u(x, t)

| log(T − t)|
≤ C, c ≤ v(x, t)

log | log(T − t)|
≤ C.
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In particular,

c ≤ um−1(x0, t)(log u(x0, t))
p+

p+−n+ (T − t) ≤ C, c ≤ e(p+−n+)v(x0,t)

| log(T − t)|
≤ C.

(iv) If m+ = q+ + 1 and n+ = p+, then

c ≤ log u(x, t)

| log(T − t)|
≤ C, c ≤ v(x, t)

| log(T − t)|
≤ C.

3. Proofs of Proposition 2.1 and Theorems 2.2–2.5

Proof of Proposition 2.1. Similarly to the proof for problem (3) in [16], if m+ > 1
or n+ > 0, the classical solution of (1) blows up for large initial data.

Denote a positive constant β = min {minx∈Ω̄ p(x) + 1,minx∈Ω̄ q(x)} > 1. In-
troduce two functions ζ(t) =

∫
Ω
φ(x)u(x, t)dx, ξ(t) =

∫
Ω
φ(x)v(x, t)dx. Define

two subsets of Ω as follows,

Ω{≥1} = {x ∈ Ω : u ≥ 1}, Ω{<1} = {x ∈ Ω : u < 1}.

We have

ζ ′(t) ≥ −λζ(t) +

∫
Ω

φ(x)

∫
Ω

um(y)(y, t)ep(y)v(y,t)dydx

≥ −λζ(t) +

∫
Ω

φ(x)

∫
Ω{≥1}

um−(y, t)ep−v(y,t)dydx

≥ −λζ(t) +

∫
Ω

φ(x)

∫
Ω{≥1}

ep−v(y,t)dydx

+

∫
Ω

φ(x)

∫
Ω{<1}

ep−v(y,t)dydx−
∫
Ω

φ(x)

∫
Ω{<1}

ep−v(y,t)dydx

≥ −λζ(t) + c

∫
Ω

φ(x)

∫
Ω

vp−+1(y, t)dydx− c

≥ −λζ(t) + c

∫
Ω

φ(y)vp−+1(y, t)dy − c.

By applying the Jensen’s inequality, we have

ζ ′(t) ≥ −λζ(t) + cξβ(t), (8)

similarly, there is the inequality

ξ′(t) ≥ −λξ(t) + cζβ(t). (9)

Define K(t) = ζ(t) + ξ(t). Combining (8) with (9), we have

K ′(t) ≥ −λK(t) + c(ζβ(t) + ξβ(t)) ≥ −λK(t) + cKβ(t).

HenceK(t) blows up in finite time for large initial data, which deduces (∥u(·, t)∥∞+
∥v(·, t)∥∞) blows up. �
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In order to prove Theorem 2.2, we introduce the following lemma. Let ϕ solve
ϕt = ∆ϕ, (x, t) ∈ Ω× (0, T ),

ϕ = 0, (x, t) ∈ ∂Ω× (0, T ),

ϕ(x, 0) = φ(x), x ∈ Ω,

(10)

where φ is the normalized first eigenfuction of (5).

Lemma 3.1. Under the condition (4),

ut ≥ εϕ

∫
Ω

um(x)(x, t)ep(x)v(x,t)dx, (x, t) ∈ Ω× [0, T ), (11)

vt ≥ εϕ

∫
Ω

uq(x)(x, t)en(x)v(x,t)dx, (x, t) ∈ Ω× [0, T ). (12)

Proof. Construct functions

J = ut − εϕ

∫
Ω

um(x)(x, t)ep(x)v(x,t)dx, (x, t) ∈ Ω× [0, T ).

K = vt − εϕ

∫
Ω

uq(x)(x, t)en(x)v(x,t)dx, (x, t) ∈ Ω× [0, T ).

Noticing ut, vt ≥ 0 by the comparison principle with (4), we know

Jt −∆J ≥ (1− εϕ)

∫
Ω

(
m(x)um(x)−1ep(x)vut + p(x)um(x)ep(x)vvt

)
dx ≥ 0,

Kt −∆K ≥ (1− εϕ)

∫
Ω

(
q(x)uq(x)−1en(x)vut + n(x)uq(x)en(x)vvt

)
dx

≥ 0, (x, t) ∈ Ω× (0, T ),

J(x, t) = K(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ), and J(x, t) = K(x, t) = 0, (x, t) ∈
∂Ω× (0, T ), which yield (11) and (12) by the comparison principle. �

Remark 3.1. Let ξ = ϕt. It follows from (10) that ξt = ∆ξ in Ω × (0, T ),
ξ = 0 on ∂Ω × (0, T ), ξ(x, 0) = −λφ(x) < 0 in Ω, and thus ξ = ϕt ≤ 0 for
(x, t) ∈ Ω× (0, T ). By (11) with ϕ(x0, t) ≥ ϕ(x0, T ), v(x0, t) ≥ v0(x0), we have

ut(x0, t) ≥ ε|σ|ϕ(x0, T )e
p+v0(x0)um+(x0, t), t ∈ [0, T ),

where σ ⊂ Ω denotes a set in which the variable exponents take their maxima
and |σ| is the measure, and hence

u(x0, t) ≤
[
ε(m+ − 1)|σ|ϕ(x0, T )e

p+v0(x0)
]− 1

m+−1

(T − t)
− 1

m+−1 , (13)

for m+ > 1, t ∈ [0, T ). Similarly,

ev(x0,t) ≤
[
εn+|σ|ϕ(x0, T )u

q+
0 (x0)

]− 1
n+ (T − t)

− 1
n+ , n+ > 0, t ∈ [0, T ). (14)
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For convenience, define

f(t) =

∫
Ω

um(x)(x, t)ep(x)v(x,t)dx, g(t) =

∫
Ω

uq(x)(x, t)en(x)v(x,t)dx,

F (t) =

∫ t

0

f(s)ds, G(t) =

∫ t

0

g(s)ds.

By Lemmas 4.3, 4.4 and Theorem 4.1 of [2], one can obtain that

Lemma 3.2. Let (u, v) be a simultaneous blowup solution of (1). Then there
exists some constant C > 0 such that

lim
t→T

u(x, t)

F (t)
= lim

t→T

∥u(·, t)∥∞
F (t)

= 1, lim
t→T

v(x, t)

G(t)
= lim

t→T

∥v(·, t)∥∞
G(t)

= 1,

and lim
t→T

ut(x, t)

f(t)
= lim

t→T

vt(x, t)

g(t)
= 1

hold uniformly on any compact subset of Ω. �
Remark 3.2. The corresponding results in Lemma 3.2 hold also for the blowup
component if non-simultaneous blowup occurs.

Proof of Theorem 2.2. (i) Assume m+ > q+ + 1. Let

Γ(x, y, t, τ) =
1

[4π(t− τ)]N/2
exp

{
− |x− y|2

4(t− τ)

}
be the fundamental solution of the heat equation, and (ũ0, ṽ0) be a pair of
initial data such that the solution of (1) blows up. Take v0 = ṽ0 and denote
Mv = ∥v0∥∞ + 1 . Let u0 ≥ ũ0 be large such that the blowup time T satisfies

Mv ≥ ∥v0∥∞ +
(m+ − 1)|Ω|
m+ − 1− q+

[
ε(m+ − 1)|σ|ϕ(x0, T )ep+v0(x0)

]− q+
m+−1

T

m+−1−q+
m+−1 en+Mv .

Consider the auxiliary problem
v̄t = ∆v̄ + |Ω|C

− q+
m+−1

u (T − t)
− q+

m+−1 en+Mv , (x, t) ∈ Ω× (0, T ),

v̄(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),

v̄(x, 0) = v0(x), x ∈ Ω,

with Cu = ε(m+ − 1)|σ|ϕ(x0, T )e
p+v0(x0). For m+ > q+ + 1, we have

v̄(x, t) ≤
∫
Ω

Γ(x, y, t, 0)v0(y)dy +

∫ t

0

∫
Ω

Γ(x, y, t, τ)|Ω|C
−

q+
m+−1

u (T − τ)
−

q+
m+−1 e

n+Mvdydτ

≤ ∥v0∥∞ +
(m+ − 1)|Ω|
m+ − 1 − q+

[
ε(m+ − 1)|σ|ϕ(x0, T )e

p+v0(x0)
]− q+

m+−1 T

m+−1−q+
m+−1 e

n+Mv

≤ Mv,

and hence

v̄t ≥ ∆v̄ + |Ω|C
− q+

m+−1

u (T − t)
− q+

m+−1 en+v̄(x0,t), (x, t) ∈ Ω× (0, T ).
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Followed by (14), v satisfies

vt ≤ ∆v + |Ω|C
− q+

m+−1

u (T − t)
− q+

m+−1 en+v(x0,t), (x, t) ∈ Ω× (0, T ).

By the comparison principle, v is bounded for v ≤ v̄ ≤ Mv.
Now, assume u blows up alone. It can be checked that m+ > 1. By Remark

3.2, we obtain

lim
t→T

ut(x, t)∫
Ω

um(x)(x, t)ep(x)v(x,t)dx

= 1,

uniformly on compact subsets of Ω. Then there must exist positive constants c

and C such that ut(x0, t) ≤ Cum+(x0, t), and hence u(x0, t) ≥ c(T − t)
− 1

m+−1

by integrating from t to T . Using (12), one obtains vt(x0, t) ≥ c(T − t)
− q+

m+−1 ,

and so v(x0, t) ≥
∫ t

0
c(T − τ)

− q+
m+−1 dτ after integrating the inequality over (0, t).

The boundedness of v requires m+ > q+ + 1.

(ii) Assume n+ > p+. Let (ũ0, ṽ0) be the initial data such that the solution
of (1) blows up. Take u0 = ũ0, and denote Mu = ∥u0∥∞ + 1 . Let v0 ≥ ṽ0 be
large such that the blowup time T satisfies

Mu ≥ ∥u0∥∞ +
n+

n+ − p+
|Ω|

[
εn+|σ|ϕ(x0, T )u

q+
0 (x0)

]− p+
n+ T

n+−p+
n+ Mm+

u .

Consider the auxiliary problem
ūt = ∆ū+ |Ω|C

− p+
n+

v (T − t)
− p+

n+ M
m+
u , (x, t) ∈ Ω× (0, T ),

ū(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),

ū(x, 0) = u0(x), x ∈ Ω,

with Cv = εn+|σ|ϕ(x0, T )u
q+
0 (x0). By Green’s identity with n+ > p+, we have

ū(x, t) ≤ Mu, and hence

ūt ≥ ∆ū+ |Ω|C
− p+

n+
v (T − t)

− p+
n+ ūm+(x0, t), (x, t) ∈ Ω× (0, T ).

It follows from (13) that v satisfies

ut ≤ ∆u+ |Ω|C
− p+

n+
v (T − t)

− p+
n+ um+(x0, t), (x, t) ∈ Ω× (0, T ),

and thus u ≤ ū ≤ Mu.
Now, assume that v blows up alone. It can be checked that n+ > 0, and

lim
t→T

vt(x, t)∫
Ω

uq(x)(x, t)en(x)v(x,t)dx

= 1,

uniformly on compact subsets of Ω by Remark 3.2. We have vt(x0, t) ≤ Cen+v(x0,t),

and hence ev(x0,t) ≥ c(T − t)
− 1

n+ . Furthermore, ut(x0, t) ≥ c(T − t)
− p+

n+ due
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to (11), and consequently, u(x0, t) ≥
∫ t

0
c(T − τ)

− p+
n+ dτ . The boundedness of u

implies n+ > p+. �

Proof of Theorem 2.4. (i) Assume m+ > q+ + 1 and n+ ≤ p+. By Theorem 2.2,
there exists initial data such that u blows up alone if m+ > q++1 and v cannot
blow up alone due to n+ ≤ p+, hence we only need to exclude the possibility of
simultaneous blowup with n+ ≤ p+. Otherwise, by Lemma 3.2, we have

lim
t→T

ut(x, t)∫
Ω

um(x)(x, t)ep(x)v(x,t)dx

= lim
t→T

vt(x, t)∫
Ω

uq(x)(x, t)en(x)v(x,t)dx

= 1,

uniformly on compact subsets of Ω. Hence there exist positive constants c and
C such that

cum+(x0, t)e
p+v(x0,t) ≤ ut(x0, t) ≤ Cum+(x0, t)e

p+v(x0,t), (15)

cuq+(x0, t)e
n+v(x0,t) ≤ vt(x0, t) ≤ Cuq+(x0, t)e

n+v(x0,t). (16)

One can obtain the contradictions with simultaneous blowup as follows,

e(p+−n+)v(x0,t) ≤ C + Cuq++1−m+(x0, t) for m+ > q+ + 1, n+ < p+,

v(x0, t) ≤ C + Cuq++1−m+(x0, t) for m+ > q+ + 1, n+ = p+.

Now assume that any blowup must be u blowing up alone. Theorem 2.2-(i)
requires m+ > q+ +1. On the other hand, Theorem 2.2-(ii) says v may blow up
alone if and only if n+ > p+. Thus n+ ≤ p+.Case (ii) can be treated by using

the same techniques as above for(i). �

In order to prove Theorem 2.5, we introduce a lemma. Denote V0 as a set
making up of the initial data satisfying (4).

Lemma 3.3. The set of (u0, v0) in V0 such that u (v) blows up while v (u)
remains bounded is open in L∞-topology.

Proof. Without loss of generality, we only prove the case for u blowing up
with v remaining bounded. Let (u, v) be a solution of (1) with initial data
(u0, v0) ∈ V0 such that u blows up while v remains bounded up to blowup time
T , say ∥v(·, t)∥∞ ≤ M . It suffices to find an L∞-neighborhood of (u0, v0) in V0

such that any solution (û, v̂) of (1) coming from this neighborhood maintains
the property that û blows up while v̂ remains bounded.

By Theorem 2.2, we know m+ > q+ + 1. Take M1 = M + 2ξ. Let (ũ, ṽ) be
the solution of (1) with the initial data (ũ0, ṽ) ∈ V0 and the maximal existence
time T0. Define

N(u0, v0) =
{
(ũ0, ṽ0) ∈ V0 | ∥ũ0(x)−u(x, T−ε0)∥∞, ∥ṽ0(x)−v(x, T−ε0)∥∞ < ξ

}
.
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Since u blows up at time T , there exists some small constant ε0 > 0 such that
(ũ, ṽ) blows up and T0 satisfies

M1 ≥ M+ξ+
(m+ − 1)|Ω|
m+ − 1− q+

[
ε(m+ − 1)|σ|ϕ(x0, T0)e

p+v0(x0)
]− q+

m+−1
T

m+−1−q+
m+−1

0 en+M1 ,

provided that (ũ0, ṽ0) ∈ N(u0, v0).
Consider the auxiliary problem

v̄t = ∆v̄ + |Ω|C
− q+

m+−1

1 (T0 − t)
− q+

m+−1 en+M1 , (x, t) ∈ Ω× (0, T0),

v̄(x, t) = 0, (x, t) ∈ ∂Ω× (0, T0),

v̄(x, 0) = ṽ0(x), x ∈ Ω,

where C1 = ε(m+−1)|σ|ϕ(x0, T0)e
p+v0(x0). By Green’s identity, v̄ ≤ M1. Hence

v̄t ≥ ∆v̄ + |Ω|C
− q+

m+−1

1 (T0 − t)
− q+

m+−1 en+v̄(x0,t), (x, t) ∈ Ω× (0, T0).

On the other hand, by (13), we have

ṽt ≤ ∆ṽ + |Ω|C
− q+

m+−1

1 (T0 − t)
− q+

m+−1 en+ṽ(x0,t), (x, t) ∈ Ω× (0, T0).

We have ṽ ≤ v̄ ≤ M1 by the comparison principle.
According to the continuity with respect to initial data for bounded solutions,

there must exist a neighborhood of (u0, v0) in V0 such that every solution (û, v̂)
starting from the neighborhood will enter N(u0, v0) at time T − ε0, and keeps
the property that û blows up while v̂ keep bounded. �
Proof of Theorem 2.5. Firstly, let m+ > q+ + 1, n+ > p+, and assume that the
solution of (1) blows up with initial data (u0, v0) ∈ V0. Then the family of initial
data (u0/λ, v0/(1−λ)) ∈ V0 with λ ∈ (0, 1) makes the related solutions blow up
also. By Theorem 2.2, u blows up with v remaining bounded for some λ = λ1

near 0, and v blows up alone with some λ = λ2 close to 1. By Lemma 3.3, such
sets of initial data are open and connected. Therefore, there must exist some
λ ∈ (λ1, λ2) such that simultaneous blowup happens.

Now assume both simultaneous and non-simultaneous blowup may occur
there. Since any blowup must be simultaneous in {m+ ≤ q+ + 1, n+ ≤ p+} by
Corollary 2.3, and any blowup must be non-simultaneous in {m+ > q++1, n+ ≤
p+} (or {m+ ≤ q+ + 1, n+ > p+}) by Theorem 2.4, then it has to be satisfied
that m+ > q+ + 1 and n+ > p+. �

4. Proof of Theorem 2.6

Followed from (15) and (16), We show a lemma for the relationships between
u(x0, t) and v(x0, t) without proof.

Lemma 4.1. Let (u, v) be a simultaneous blowup solution of (1) ensured by
Corollary 2.3 and Theorem 2.5 with blow-up time T . For any given δ, ε ∈ (0, 1)
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and σ > 1, there exists T̃ < T such that the following relationships hold for any
t ∈ [T̃ , T ).

(i) If m+ < q+ + 1 and n+ < p+, then
ε

q+ + 1−m+
uq++1−m+(x0, t) ≤

σ

p+ − n+
e(p+−n+)v(x0,t),

δε

p+ − n+
e(p+−n+)v(x0,t) ≤ 1

q+ + 1−m+
uq++1−m+(x0, t).

(ii) If m+ < q+ + 1 and n+ = p+, then
ε

q+ + 1−m+
uq++1−m+(x0, t) ≤ σv(x0, t),

δεv(x0, t) ≤
1

q+ + 1−m+
uq++1−m+(x0, t).

(iii) If m+ = q+ + 1 and n+ < p+, then

ε log u(x0, t) ≤
σ

p+ − n+
e(p+−n+)v(x0,t),

δε

p+ − n+
e(p+−n+)v(x0,t) ≤ log u(x0, t).

(iv) If m+ = q+ + 1 and n+ = p+, then

ε log u(x0, t) ≤ σv(x0, t), δεv(x0, t) ≤ log u(x0, t).

(v) If m+ > q+ + 1 and n+ > p+, then

1

m+ − 1− q+
uq++1−m+(x0, t) ≤

σ

n+ − p+
e(p+−n+)v(x0,t),

δ

n+ − p+
e(p+−n+)v(x0,t) ≤ 1

m+ − 1− q+
uq++1−m+(x0, t).

Proof of Theorem 2.6. We only prove case (ii): m+ < q+ + 1 and n+ = p+, and
the other cases can be treated similarly. By Lemma 4.1-(ii),

ε

q+ + 1−m+
uq++1−m+(x0, t) ≤ σv(x0, t), (17)

δεv(x0, t) ≤
1

q+ + 1−m+
uq++1−m+(x0, t), (18)

we have c ≤ vt(x0, t)v
− q+

q++1−m+ (x0, t)e
−n+v(x0,t) ≤ C, and hence, by integrating

the above inequalities over (t, T ),

c(T − t) ≤
∫ +∞

v(x0,t)

e−n+ss
− q+

q++1−m+ ds ≤ C(T − t). (19)

It can be checked that

lim
t→T

∫ +∞

v(x0,t)

e−n+ss
− q+

q++1−m+ ds

e−n+v(x0,t)v
− q+

q++1−m+ (x0, t)
=

1

n+
. (20)
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By (19) and (20), we obtain (7).
For p+ = n+, there is

cuq+(x0, t)e
n+v(x0,t) ≤ uq+−m+(x0, t)ut(x0, t) ≤ Cuq+(x0, t)e

n+v(x0,t). (21)

By Lemma 4.1-(ii) with (21),

cv

q+
q++1−m+ (x0, t)e

n+v(x0,t) ≤ u
q+−m+ (x0, t)ut(x0, t) ≤ Cv

q+
q++1−m+ (x0, t)e

n+v(x0,t)
. (22)

Due to (7) and (22), we have

c(T − t)−1 ≤ uq+−m+(x0, t)ut(x0, t) ≤ C(T − t)−1.

By integration, we have c |log(T − t)| ≤ uq++1−m+(x0, t) ≤ C |log(T − t)|. By
Lemma 3.2, there exist positive constants c, C such that

cu(x0, t) ≤ u(x, t) ≤ Cu(x0, t), cv(x0, t) ≤ v(x, t) ≤ Cv(x0, t). (23)

Hence

c |log(T − t)| ≤ uq++1−m+(x, t) ≤ C |log(T − t)| . (24)

Combining the above inequalities with (17), (18), and (23), the estimate for
v(x, t) is obtained as follows,

c| log(T − t)| ≤ v(x, t) ≤ C| log(T − t)|. (25)

Then (6) is obtained. �
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