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Abstract. In this paper, we investigate h-stability of the nonlinear per-
turbed difference system via n∞-similarity.

AMS Mathematics Subject Classification : 39A10, 39A11.

Key words and phrases : nonlinear Volterra difference system, h-stability,
n∞-similar.

1. Introduction

Discrete Volterra systems arise mainly in the process of modeling of some
real phenomena or by applying a numerical method to a Volterra integral equa-
tion. when we study the asymptotic stability it is not easy to work with non-
exponential types of stability. Medina and Pinto [13-15] extended the study of
exponential stability to a variety of reasonable systems called h-systems. They
introduced the notion of h-stability for difference systems as well as for differ-
ential systems. To study the various stability notions of nonlinear difference
systems, the comparison principle [12] and variation of constants formula by
Agarwal [1] play a fundamental role.

Media and Pinto [13-15] applied the h-stability to obtain a uniform treatment
for the various stability notions in difference systems and gave new insights about
stability for weakly stable difference systems. Also, Choi , Koo [3] and Goo, Park
[9] obtained results for hS of nonlinear difference systems via n∞-similarity. The
stability problem for Volterra difference systems was studied by Elaydi [10],
Elaydi and Murakami [11], Raffoul [16], Zouyousefain and Leela [17], Choi and
Koo [2], and others.

In this paper, we investigate h-stability of the nonlinear difference systems
via n∞-similarity.
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2. Preliminaries

We consider the nonlinear Volterra difference system

x(n+ 1) = f(n, x(n)), (1)

where f : N(n0)×Rm → Rm, N(n0)={n0, n0+1, · · · , n0+k, · · · } (n0 a nonneg-
ative integer), Rm is the m-dimensional real euclidean space. We assume that
fx= ∂f/∂x exists and is continuous and invertible on N(n0)×Rm, f(n, 0) = 0.
Let x(n) = x(n, n0, x0) be the unique solution of (1) with x(n0, n0, x0) = x0.
Also, we consider its associated variational system

v(n+ 1) = fx(n, 0)v(n) (2)

and

z(n+ 1) = fx(n, x(n, n0, x0))z(n) (3)

of (1). The fundamental matrix Φ(n, n0, 0) of (2) is given by

Φ(n, n0, 0) =
∂

∂x0
x(n, n0, 0)

and the fundamental matrix Φ(n, n0, x0) of (3) is given by

Φ(n, n0, x0) =
∂

∂x0
x(n, n0, x0)

(See [12]).

The symbol | · | will be used to denote any convenient vector norm on Rm.
We now recall the main definitions [13] that we need in the sequel.

Definition 2.1. The zero solution of (1), or more briefly system (1), is called
(hS) h-stable if there exist c ≥ 1, δ > 0 and a positive bounded function h :
N(n0) → R such that

| x(n, n0, x0) |≤ c | x0 | h(n)h−1(n0)

for n ≥ n0 and | x0 |< δ (here h−1(n) = 1/h(n)),
(hSV) h-stable in variation if the zero solution of system (3) is hS.

The notion of n∞-similarity in M was introduced by Choi and Koo [3]. Let
M denote the set of all m ×m invertible matrices A(n) defined on N(n0) and
N be the subset of M consisting of those nonsingular bounded matrices S(n)
such that S−1(n) is also bounded.

Definition 2.2. A matrix A(n) ∈ M is n∞-similar to a matrix B(n) ∈ M if
there exists an m×m matrix F (n) absolutely summable over N(n0), i.e.,

∞∑
l=n0

| F (l) |< ∞

such that
S(n+ 1)B(n)−A(n)S(n) = A(n)F (n)
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for some S(n) ∈ N .

For the example of n∞-similarity, see [3].

Remark 2.3. The notion of t∞-similarity is an equivalence relation in the set of
all m×m continuous matrices on R+ but the n∞-similarity is not an equivalence
relation in general.

We consider the nonlinear difference system

x(n+ 1) = f(n, x(n))

and its perturbed difference system

y(n+ 1) = f(n, y(n)) +
n∑

l=n0

g(l, y(l), T y(l)), y(n0) = y0 (4)

where f : N(n0)× Rm → Rm, and g : N(n0)× Rm × F (N(n0),Rm) → Rm,and
T : F (N(n0),Rm) → F (N(n0),Rm) is an operator on
F (N(n0),Rm)={y|y : N(n0) → Rm is a sequence}, and f(n, 0) = g(n, 0, 0) = 0.
Let y(t) = y(t, t0, y0) denote the solution of (4) satisfying the initial condition
y(n0, n0, y0) = y0.

We give some related properties that we need in the sequal.

Theorem 2.4 ([15]). If the solution x = 0 of (1) is hS ,then the solution v = 0
of (2) is hS.

Theorem 2.5 ([3]). Assume that fx(n, 0) is n∞-similar to fx(n, x(n, n0, x0))
for n ≥ n0 ≥ 0 and | x0 |≤ δ for some constant δ > 0. Then, the solution v = 0
of (2) is hS if and only if the solution z = 0 of (3) is hS.

Lemma 2.6 ([7]). Let k(n, r, u) be a nondecreasing function in rand u for any
fixed n ∈ N(n0). Suppose that for n ≥ n0,

v(n)−
n−1∑
l=n0

k(l, v(l), |T |v(l)) < u(n)−
n−1∑
n=n0

k(l, u(l), |T |u(l))

If v(n0) < u(n0), then v(n) < u(n) for all n ≥ n0.

Lemma 2.7 ([4]). Let a(n),b(n), and c(n) be nonnegative functions definded on
N(n0) and d be a positive number. If for any n ≥ n0, the following inequality
holds

u(n) ≤ d+
n−1∑
s=n0

a(s)u(s) +
n−1∑
s=n0

b(s)
s−1∑
l=n0

c(l)u(l),

then

u(n) ≤ dexp[

n−1∑
s=n0

(a(s) + b(s)

s−1∑
l=n0

c(l)], n ≥ n0.
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3. Main Results

In this section, we investigate hS for the nonlinear difference systems via n∞-
similarity using the comparison principle and Bihari-type inequalities. In our
subsequent discussion we assume that for any two sequences y(n) and z(n) ∈
F (N(n0),Rm), the operator S satisfies the following property: |y(n)| ≤ |z(n)|
implies |Sy(n)| ≤ |Sz(n)| and |Sy(n)| ≤ |S||y(n)| for each finite interval n0 ≤
n ≤ l of N(n0) and |S| : F (N(n0),R+) → F (N(n0),R+) is a nondecreasing
operator.

Theorem 3.1. Suppose that fx(n, 0) is n∞-similar to fx(n, x(n, n0, x0)) for
n ≥ n0 ≥ 0 and | x0 |≤ δ for some constant δ > 0 and the solution x = 0 of (1)
is hS. Also, suppose that

|
n∑

l=n0

g(n, y, Ty) |≤ a(n) | y|+ b(n)
n−1∑
l=n0

c(l)|y(l)|

where a, b, c ∈ F (N(n0),R+) and

M(n) = expc1

n−1∑
l=n0

[
h(l)

h(l + 1)
a(l) +

b(l)

h(l + 1)

l−1∑
k=n0

h(k)c(k)] < ∞.

Then the zero solution y = 0 of (4) is hS

Proof. Using the discrete analogue of Alekseev’s formula[13], the solutions of (1)
and (4) with the same initial value are related by

y(n, n0, y0) = x(n, n0, y0)

+
n−1∑
l=n0

∫ 1

0

Φ(n, l + 1, µ(y(l), τ))dτ ·
l∑

k=n0

g(k, y(k), T y(k)),

where µ(y(n), τ) = f(n, y(n))+τ
∑n

l=n0
g(l, y(l), T y(l)), τ ∈ [0, 1] and Φ(n, n0, x0)

is the fundamental matrix of (3). In view of the assumptions, Theorem 1.4 and
Theorem 1.5, the zero solution z = 0 of (3) is hS. Hence, we have

| y(n, n0, y0) |

≤| x(n, n0, y0) | +
n−1∑
l=n0

∫ 1

0

|Φ(n, l + 1, µ(y(l), τ)) | dτ ·
l∑

k=n0

g(k, y(k), T y(k))

≤ c | y0|h(n)h−1(n0) + c
n−1∑
l=n0

h(n)h−1(l + 1)[a(l) | y(l)|+ b(l)
l−1∑
k=n0

c(k)|y(k)|].
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Letting u(n) = |y(n)|
h(n) , by Lemma 1.7, we obtain

u(n) ≤ cu(n0) + c

n−1∑
l=n0

[
h(l)

h(l + 1)
a(l)u(l) +

b(l)

h(l + 1)

l−1∑
k=n0

h(k)c(k)u(k)

≤ cu(n0)expc[
n−1∑
l=n0

[
h(l)

h(l + 1)
a(l) +

b(l)

h(l + 1)

l−1∑
k=n0

h(k)c(k)]

≤ c1u(n0)M(∞).

Hence, we obtain

| y(n) | ≤ M | y0 | h(n)h−1(n0),M = c1M(∞) ≥ 1,

for all n ≥ n0 . This completes the proof. �

Corollary 3.2. Suppose that fx(n, 0) is n∞-similar to fx(n, x(n, n0, x0)) for
n ≥ n0 ≥ 0 and | x0 |≤ δ for some constant δ > 0 and the solution x = 0 of (1)
is hS with the positive increasing function h(n) and for any n ≥ n0.

|
n∑

l=n0

g(n, y, Ty) |≤ a(n) | y|+ b(n)

n−1∑
l=n0

c(l)|y(l)|,

where a, b, c ∈ l1(N(n0)). Then the zero solution y = 0 of (4) is also hS.

Theorem 3.3. Suppose that fx(n, 0) is n∞-similar to fx(n, x(n, n0, x0)) for
n ≥ n0 ≥ 0 and |x0| ≤ δ for some constant δ > 0 and the solution x = 0 of (1)
is hS with the nonincreasing function h(n). Also, suppose that

|
n∑

l=n0

g(l, z, Tz) |≤ r(n, | z |, |Tz|) for n ≥ n0, | z |< ∞,

where r : N(n0)×R+×R+ → R+ is strictly increasing in u and v for each fixed
n ∈ N(n0) with r(n, 0, 0) = 0. Consider the scalar difference equation

u(n+ 1) = u(n) + cr(n, u(n), |T |u(n)), u(n0) = u0, c > 1. (5)

If the zero solution u = 0 of (5) is hS, then the zero solution y = 0 of (4) is also
hS whenever u0 = c | y0 |.

Proof. Using the discrete analogue of Alekseev’s formula [13], we have

y(n, n0, y0)

= x(n, n0, y0) +
n−1∑
l=n0

∫ 1

0

Φ(n, l + 1, µ(y(l), τ))dτ ·
l∑

k=n0

g(k, y(k), T (k)),

where µ(y(n), τ) = f(n, y(n))+τ
∑l

k=n0
g(k, y(k), Ty(k)), τ ∈ [0, 1] and Φ(n, n0, x0)

is the fundamental matrix of (3). By the assumptions, Theorem 1.4 and Theorem
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1.5, the zero solution z = 0 of (3) is hS. Hence, we obtain

| y(n, n0, y0) |

≤| x(n, n0, y0) | +
n−1∑
l=n0

∫ 1

0

| Φ(n, l + 1, µ(y(l), τ)) |dτ |
l∑

k=n0

g(k, y(k), T y(k)) |,

≤ c | y0 | h(n)h−1(n0) + c
n−1∑
l=n0

h(n)h−1(l + 1)r(l, | y(l) |, |Ty(l)|)

≤ c | y0 | +c
n−1∑
l=n0

r(l, | y(l) |, |Ty(l)|),

since h(n) is nonincreasing. Thus, we have

| y(n) | −c
n−1∑
l=n0

r(l, | y(l) |, |Ty(l)|) ≤ c | y0 |= u0 = u(n)−c
n−1∑
l=n0

r(l, u(l), |T |u(l)).

By Lemma 1.6, we get y(n) < u(n) for all n ≥ n0. In view of the assumption,
since u = 0 of (5) is hS, we obtain

| y(n) |< u(n) ≤ c1u0h(n)h(n0)
−1

= c1c | y0 | h(n)h(n0)
−1

= d | y0 | h(n)h(n0)
−1, d = c1c > 1

Hence, the proof is complete. �

Remark 3.4. Letting g(n, y, Ty) = g(n, y) and r(n, u, w) = r(n, u) in Theorem
2.3, we obtain the same result as that of Theorem 3.5 in [9] .

Remark 3.5. If we consider the linear difference system

x(n+ 1) = f(n, x(n)) = A(n)x(n) (6)

and its perturbation

y(n+ 1) = A(n)y(n) +

n∑
l=n0

g(l, y(l), T y(l)), (7)

where A(n) is an m×m matrix defined on N(n0), then the zero solution y = 0
of (7) is hS under the same conditions in Theorem 2.3.
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