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ON THE MARTINGALE PROPERTY OF LIMITING

DIFFUSION IN SPECIAL DIPLOID MODEL†

WON CHOI

Abstract. Choi [1] identified and characterized the limiting diffusion of

this diploid model by defining discrete generator for the rescaled Markov
chain. In this note, we define the operator of projection St on limiting dif-
fusion and new measure dQ = StdP . We show the martingale property on
this operator and measure. Also we conclude that the martingale problem

for diffusion operator of projection is well-posed.
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1. Introduction

We begin by formulating a Wright-Fisher model that is general enough to
include the normal selection model. Let E(a locally compact separable metric
space) be the set of all possible allels and ν0(in P(E) , the set of Borel probability
measures on E) the distribution of the type of a new mutant. Suppose that N(a
positive integer) is the diploid population size and s(x) is the selection coefficient
of allele x.

The Wright-Fisher model is a Markov chain describing the evolution of the
composition of the population of gameters (x1, x2, · · · , x2N ) in E2N or, since the
order of the gameter is unimportant,

1

2N

2N∑
i=1

δxi ∈ P(E)

(Here δx ∈ P(E) is the unit mass at x ∈ E).
We now consider the normal-selection model in this note. The type space E

is unspecified. However, ν0 and the function s must jointly satisfy the following
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condition; If X is a random variable with distribution ν0, then s(X) has the
normal distribution with mean 0 and variance σ2. Furthermore, σ = σ0/2N for
an appropriate constant σ0. There are therefore a number of possible choice for
E, ν0, and s, including;

E = (0, 1), ν0 = U(0, 1), s(x) = σΦ−1(x),

where Φ is the standard normal distribution function,

E = R, ν0 = N(0, σ2), s(x) = x,

and

E = R, ν0 = N(0, σ2
0), s(x) = x/2N.

For each positive integer M , let ωM be a positive, symmetric, bounded, Borel
function on E2, let RM ((p, q), dx × dy) be a one-step transition function on
E2 × B(E2) satisfying

RM ((p, q), dx× dy) = RM ((q, p), dy × dx),

and QM (p, dx) be a one-step transition function on E × B(E).
Let N be the diploid population size. We consider M = 2N gametes and the

mapping ηM : EM → P(E) by letting

ηM (p1, p2, · · · , pM ) =
1

M
(δp1 + δp2 + · · ·+ δpM

).

Here δp ∈ P(S) denotes the unit mass at p ∈ S. The state space for this model
is

KM (E) = ηM (EM ).

Given µ ∈ P(E), we define µ1 ∈ P(E2) and µ2, µ3 ∈ P(E) by

µ1(dp× dq) = ωM (p, q)µ2(dp× dq)/⟨ωM , µ2⟩, (1)

µ2(dx) =

∫
E2

RM ((p, q), dx× E)µ1(dp× dq), (2)

µ3(dx) =

∫
E

QM (p, dx)µ2(dp). (3)

The Markov chain has one-step transition function PM (µ, dθ) on KM (E) ×
(KM (E)) defined by

PM (µ, ·) =
∫
EM

(µ3)
M (dp1 × dp2 × · · · × dpM )δηM (p1,p2,··· ,pM )(·).

Choi [1] identified and characterized the limiting diffusion of this diploid model
by defining discrete generator for the rescaled Markov chain. In this note, we
define the operator of projection St on limiting diffusion and new measure dQ =
StdP . We show the martingale property on this operator and measure. Also
we conclude that the martingale problem for diffusion operator of projection is
well-posed.
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2. Main Results

In order to consider a limiting diffusion, we define the discrete generator LM

for the M -the rescaled Markov chain and canonical coordinate process {ρt, t ≥
0}:

(LMϕ)(ρt) = M

∫
PM

(ϕ(νt)− ϕ(ρt))PM (ρt, νt)

where PM is given in the diploid models as described above.
We restrict our attention to test functions θ of the form

θ(νt) = β1⟨f1, νt⟩ · · ·βk⟨fk, νt⟩, θ(ρt) = ⟨f1, ρt⟩ · · · ⟨fk, ρt⟩

where f1, · · · , fk ∈ B(E) and {βi} is non-negative constant satisfying that
supi βi < +∞. Assume that “mutation or gene conversion rate” is∑

k∈S

βk⟨fi, ρt⟩ − βi − βj for every i < j,

in the diploid models as described above. This means that mutations or gene
conversions occur with particular rate in case of i < j (see Choi [2]).

Choi [1] proved that there exist afi,fj , bfi ∈ B(P(S)) such that

(LMθ)(ρt) → (Lπθ)(ρt) as M → ∞

uniformly in ρt ∈ KM (S), where

(Lπθ)(ρt) =
∑

1≤i<j≤k

afi,fj
∏

l : l ̸=i,j

⟨fl, ρt⟩+
k∑

i=1

bfi
∏

l : l ̸=i

⟨fl, ρt⟩.

We start with;

Lemma 1. Suppose the conditions (1), (2) and (3) are satisfied and θ have the
form

θ(ρt) = F (⟨f1, ρt⟩, ⟨f2, ρt⟩, · · · , ⟨fk, ρt⟩) = F (⟨f , ρt⟩)
where F ∈ C2(Rk). Then there exist afi,fj , bfi ∈ B(P(E)) such that

lim
M → ∞

(LMθ)(ρt) =
∑

1≤i<j≤k

afi,fjFzizj (⟨f , ρt⟩) +
k∑

i=1

bfiFzi(⟨f , ρt⟩)

uniformly in ρt ∈ KM (E), where Fzi and Fzizj mean the partial derivative with
respect to i and i, j, respectively.

Proof. If we let

θ(ρt) = F (⟨f1, ρt⟩, ⟨f2, ρt⟩, · · · , ⟨fk, ρt⟩) = F (⟨f , ρt⟩)

afi,fj = βi⟨fifj , ρt⟩ − ⟨fi, ρt⟩⟨fj , ρt⟩(
∑
k∈S

βk⟨fi, ρt⟩ − βi − βj)

bfi = ⟨Afi, ρt⟩+ ⟨Bfi, ρ
2
t ⟩+ ⟨(fi ◦ π)σ, ρ2t ⟩ − ⟨fi, ρt⟩⟨σ, ρ2t ⟩,
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for selection function σ on E2 and π is the projection of E2, we have

(LMθ)(ρt) = (Lπθ)(ρt) + o(1)

uniformly and this result is immediate from a second order Taylor expansion
with the result of Choi [1] �

Lemma 2. Let X be a progressively measurable process and f, g, c be bounded
Borel functions. If

f(X(t))−
∫ t

0

g(X(s))ds

is {FX
t }-martingale, then

f(X(t))e−
∫ t
0
c(X(s))ds −

∫ t

0

{g(X(s))− c(X(s))f(X(s))}e−
∫ s
0
c(X(r))drds

is {FX
t }-martingale.

Proof. See Ethier and Kurtz [3] �

Let πx, πy be the projection of E2 on x and y-coordinate, respectively and
P ∈ P(E) be a solution of the martingale problem for Lπx . Define

St = exp{⟨πy, ρt⟩ − ⟨πy, ρ0⟩ −
∫ t

0

e−⟨πy.ρs⟩Lπxe
⟨πy,ρs⟩ds}

and measure Q by

dQ = StdP.

Then St is a mean one martingale and we have;

Theorem 3.

EQ

[(
θ(ρt)− θ(ρs)−

∫ t

s

(Lπx+πyθ)(ρr)dr

)
Hs

]
= 0

for θ ∈ D(Lπx+πy ) and bounded measurable function Hs.

Proof. Since

EQ

[(
θ(ρt)− θ(ρs)−

∫ t

s

(Lπx+πyθ)(ρr)dr

)
Hs

]
= Ep[θ(ρt)StHs]− EP [θ(ρs)SsHs]−

∫ t

s

EP [(Lπx+πyθ)(ρr)SrHs]dr,

we have

EQ

[(
θ(ρt)− θ(ρs)−

∫ t

s

(Lπx+πyθ)(ρr)dr

)
Hs

]
= EP [e−⟨πy,ρ0⟩{θ(ρt)e⟨πy,ρt⟩ exp

(
−
∫ t

0

e−⟨πy.ρr⟩Lπxe
⟨πy,ρr⟩dr

)
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−θ(ρs)e
⟨πy,ρs⟩ exp

(
−
∫ s

0

e−⟨πy.ρr⟩Lπxe
⟨πy,ρr⟩dr

)
−
∫ t

s

(Lπx+πyθ)(ρr)e
⟨πy,ρr⟩ exp

(
−
∫ r

0

e−⟨πy.ρx⟩Lπxe
⟨πy,ρx⟩dx}

)
drHs].

But

Lπx
[θ(ρ)e⟨πy,ρ⟩]− θ(ρ)Lπx

e⟨πy,ρ⟩

= (Lπxθ)(ρ)e
⟨πy,ρ⟩ +

k∑
i=1

(⟨fiπy, ρ⟩ − ⟨fi, ρ⟩⟨πy, ρ⟩)Fzi(⟨f , ρ⟩)e⟨πy,ρ⟩

= (Lπx+πyθ)(ρ)e
⟨πy,ρ⟩.

Therefore, from Lemma 2, we have

EQ

[(
θ(ρt)− θ(ρs)−

∫ t

s

(Lπx+πyθ)(ρr)dr

)
Hs

]
= EP [e−⟨πy,ρ0⟩{θ(ρt)e⟨πy,ρt⟩ exp

(
−
∫ t

0

e−⟨πy.ρr⟩Lπxe
⟨πy,ρr⟩dr

)
−θ(ρs)e

⟨πy,ρs⟩ exp

(
−
∫ s

0

e−⟨πy.ρr⟩Lπxe
⟨πy,ρr⟩dr

)
−
∫ t

s

(Lπx [θ(ρr)e
⟨πy,ρr⟩]− θ(ρr)Lπxe

⟨πy,ρr⟩)

exp

(
−
∫ r

0

e−⟨πy.ρx⟩Lπxe
⟨πy,ρx⟩dx

)
dr}Hs] = 0.

�

Theorem 3 allows us to define Q by

dQ = StdP.

We show that Q solve the martingale problem for Lπx+πy .

Corollary 4. The measure Q is a solution of martingale problem for Lπx+πy .

Proof. Since St is mean-one martingale and

EQ

[(
θ(ρt)− θ(ρs)−

∫ t

s

(Lπx+πyθ)(ρr)dr

)
Hs

]
= 0

for θ ∈ D(Lπx+πy ) and bounded measurable function Hs, this result follows
directly from the definition of martingale problem. �

We conclude with;

Corollary 5. The martingale problems for Lπx and Lπy are well-posed.

Proof. Apply Corollary 4 with πx = 0 or πy = 0 using the fact that existence
and uniqueness are known for L0. �
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Remark. Let Pρ be the unique solution of the martingale problem for L0

starting at ρ and π1, π2, · · · , πn the projection of En on x1, x2, · · · , xn. Then we
can define

dQρ = StdPρ

and show that Qρ solves the martingale problem for Lπ starting at ρ.
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