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OSCILLATION OF HIGHER-ORDER NEUTRAL

DIFFERENTIAL EQUATIONS WITH POSITIVE AND

NEGATIVE COEFFICIENTS AND MIXED ARGUMENTS†

YUANGONG SUN∗ AND ZHI LIU

Abstract. In this paper, we study the oscillation problem of the follow-
ing higher-order neutral differential equation with positive and negative
coefficients and mixed arguments

z(n)(t)+ q1(t)|x(t−σ1)|α−1x(t−σ1)+ q2(t)|x(t−σ2)|β−1x(t−σ2) = e(t),

where t ≥ t0, z(t) = x(t) − p(t)x(t − τ) with p(t) > 0, β > 1 > α > 0,
τ , σ1 and σ2 are real numbers. Without imposing any restriction on τ ,
we establish several oscillation criteria for the above equation in two cases:
(i) q1(t) ≤ 0, q2(t) > 0, σ1 ≥ 0 and σ2 ≤ τ ; (ii) q1(t) ≥ 0, q2(t) < 0,

σ1 ≥ τ and σ2 ≤ 0. As an interesting application, our results can also
be applied to the following higher-order differential equation with positive
and negative coefficients and mixed arguments

x(n)(t)+ q1(t)|x(t−σ1)|α−1x(t−σ1)+ q2(t)|x(t−σ2)|β−1x(t−σ2) = e(t).

Two numerical examples are also given to illustrate the main results.
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1. Introduction

Consider the following nth-order neutral differential equation of the form

z(n)(t)+ q1(t)|x(t−σ1)|α−1x(t−σ1)+ q2(t)|x(t−σ2)|β−1x(t−σ2) = e(t), (1.1)

where t ≥ t0, z(t) = x(t) − p(t)x(t − τ), n ≥ 1 is an integer. Throughout this
paper, we assume that

(A1) p ∈ Cn[t0,∞) and p(t) > 0;
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(A2) q1, q2 ∈ C[t0,∞) are real-valued functions with different sign;
(A3) β > 1 > α > 0, τ , σ1 and σ2 are real numbers;
(A4) e ∈ C[t0,∞) is an oscillatory real-valued function.
We are here only concerned with the nontrivial solutions of Eq. (1.1) that

are defined for all large t. The oscillatory behavior is considered in the usual
sense, i.e., a solution of Eq. (1.1) is said to be oscillatory if it has arbitrarily
large zeros, and nonoscillatory otherwise. Eq. (1.1) is said to be oscillatory if
all of its nontrivial solutions are oscillatory.

In this paper, we will focus on oscillation of Eq. (1.1) in the following two
cases which do not impose any restriction on τ :

(i) q1(t) ≤ 0, q2(t) > 0, σ1 ≥ 0 and σ2 ≤ τ ;
(ii) q1(t) ≥ 0, q2(t) < 0, σ1 ≥ τ and σ2 ≤ 0.

In the literature, most of oscillation results for neutral differential equations
with positive and negative coefficients and mixed arguments are restricted to
the lower-order case, i.e., n = 1 or n = 2 (see the monograph [1] and references
therein). For other oscillation results of neutral differential equations of the form
of (1.1), we refer the readers to [2-6, 8-12, 16-18, 20].

To the best of our knowledge, nothing has been known about oscillation of
the higher-order forced neutral differential equation (1.1) in both cases (i) and
(ii). Generally speaking, the investigation on oscillation of Eq. (1.1) becomes
difficult due to the existence of positive and negative coefficients, mixed (delayed
and advanced) arguments and mixed nonlinearities.

Following the method used in Agarwal and Grace [1], Ou and Wang [13],
Sun and Wong [14], Sun and Mingarelli [15], and Yang [20], we will establish
oscillation criteria for Eq. (1.1) in both cases (i) and (ii) by using a nonnegative
kernel function H(t, s) defined on D = {(t, s) : t ≥ s ≥ t0} which is sufficiently
smooth in the variable s and satisfy:

(a) H(t, s) > 0 for t > s ≥ t0 and H(t, t) = 0;
(b) hi(t, s) = (−1)i(∂iH/∂si), hi(t, s) > 0 for t > s ≥ t0, hi(t, t) = 0,

H−1(t, t0)hi(t, t0) = O(1) as t → ∞, i = 0, 1, 2, · · · , n, where h0(t, s) = H(t, s).
Our results will include some existing results as special cases, and can be used
to reveal the oscillatory behavior of solutions of Eq. (1.1) that are not covered
by the existing results in the literature.

2. Main results

Theorem 2.1. Assume that (A1) − (A4) and (i) hold. If there exists a kernel
function H(t, s) satisfying (a) and (b) such that

lim sup
t→∞

1

H(t, r)

∫ t

r

[H(t, s)e(s) + P1(t, s) + P2(t, s)]ds = +∞ (2.1)

and

lim inf
t→∞

1

H(t, r)

∫ t

r

[H(t, s)e(s)− P1(t, s)− P2(t, s)]ds = −∞ (2.2)
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hold for some r ≥ t0, where

P1(t, s) = (α− 1)α
α

1−α [hn(t, s− σ1)]
α

α−1 [H(t, s)|q1(s)|]
1

1−α ,

P2(t, s) = (1− β)β
β

1−β [H(t, s+ σ2 − τ)q2(s+ σ2 − τ)]
1

1−β [hn(t, s)p(s)]
β

β−1 ,

then Eq. (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of Eq. (1.1). Without loss of gen-
erality, we may assume x(t−m) > 0 for t ≥ t1 ≥ t0, where m = max{τ, σ1, σ2}.
When x(t) is eventually negative, the proof follows the same argument. Multi-
plying Eq. (1.1) by H(t, s) and integrating from t1 to t gives∫ t

t1

H(t, s)e(s)ds =

∫ t

t1

H(t, s)z(n)(s)ds

−
∫ t

t1

H(t, s)|q1(s)|xα(s− σ1)ds

+

∫ t

t1

H(t, s)q2(s)x
β(s− σ2)ds

= −
n−1∑
i=0

hi(t, t1)z
(n−i−1)(t1) +

∫ t

t1

hn(t, s)z(s)ds

−
∫ t

t1

H(t, s)|q1(s)|xα(s− σ1)ds

+

∫ t

t1

H(t, s)q2(s)x
β(s− σ2)ds.

(2.3)

Note that ∫ t

t1

hn(t, s)z(s)ds =

∫ t

t1

hn(t, s)[x(s)− p(s)x(s− τ)]ds.

From (2.3) we get∫ t

t1

H(t, s)e(s)ds

= −
n−1∑
i=0

hi(t, t1)x
(n−i−1)(t1)

+

∫ t

t1

[hn(t, s)x(s)−H(t, s)|q1(s)|xα(s− σ1)]ds

+

∫ t

t1

[H(t, s)q2(s)x
β(s− σ2)− hn(t, s)p(s)x(s− τ)]ds.

(2.4)



202 Y. Sun and Z. Liu

On the other hand, since σ1 ≥ 0 and σ2 ≤ τ , we have∫ t

t1

[hn(t, s)x(s)−H(t, s)|q1(s)|xα(s− σ1)]ds

=

∫ t+σ1

t1+σ1

hn(t, s− σ1)x(s− σ1)ds−
∫ t

t1

H(t, s)|q1(s)|xα(s− σ1)ds

≥
∫ t

t1

[hn(t, s− σ1)x(s− σ1)−H(t, s)|q1(s)|xα(s− σ1)]ds

−
∫ t1+σ1

t1

hn(t, s− σ1)x(s− σ1)ds,

(2.5)

and ∫ t

t1

[H(t, s)q2(s)x
β(s− σ2)− hn(t, s)p(s)x(s− τ)]ds

=

∫ t+τ−σ2

t1+τ−σ2

H(t, s+ σ2 − τ)q2(s+ σ2 − τ)xβ(s− τ)ds

−
∫ t

t1

hn(t, s)p(s)x(s− τ)ds

≥
∫ t

t1

H(t, s+ σ2 − τ)q2(s+ σ2 − τ)xβ(s− τ)ds

−
∫ t

t1

hn(t, s)p(s)x(s− τ)ds

−
∫ t1+τ−σ2

t1

H(t, s+ σ2 − τ)q2(s+ σ2 − τ)xβ(s− τ)ds.

(2.6)

For x > 0, set

F1(x) = hn(t, s− σ1)x−H(t, s)|q1(s)|xα,

and

F2(x) = H(t, s+ σ2 − τ)q2(s+ σ2 − τ)xβ − hn(t, s)p(s)x.

It is not difficult to verify that F1(x) and F2(x) obtain their minimums at

x =

[
αH(t, s)|q1(s)|
hn(t, s− σ1)

]1/(1−α)

and

x =

[
hn(t, s)p(s)

βH(t, s+ σ2 − τ)q2(s+ σ2 − τ)

]1/(β−1)

,

respectively. Moreover,

Fmin
1 = P1(t, s), Fmin

2 = P2(t, s). (2.7)
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Substituting (2.5)-(2.7) into (2.4) and dividing H(t, t1) on both sides of (2.4),
by assumptions (a) and (b) we have that there exists a constant M ∈ R such
that

1

H(t, t1)

∫ t

t1

[H(t, s)e(s)− P1(t, s)− P2(t, s)]ds ≥ M,

which contradicts (2.2). This completes the proof of Theorem 2.1. �

Theorem 2.2. Assume that (A1)− (A4) and (ii) hold. If there exists a kernel
function H(t, s) satisfying (a) and (b) such that

lim sup
t→∞

1

H(t, r)

∫ t

r

[H(t, s)e(s)−Q1(t, s)−Q2(t, s)]ds = +∞ (2.8)

and

lim inf
t→∞

1

H(t, r)

∫ t

r

[H(t, s)e(s) +Q1(t, s) +Q2(t, s)]ds = −∞ (2.9)

hold for some r ≥ t0, where

Q1(t, s) = (1− α)α
α

1−α [H(t, s)q1(s)]
1

1−α [hn(t, s+ τ − σ1)p(s+ τ − σ1)]
α

α−1 ,

Q2(t, s) = (β − 1)β
β

1−β [hn(t, s)]
β

β−1 [H(t, s+ σ2)|q2(s+ σ2)|]
1

1−β ,

then Eq. (1.1) is oscillatory.

Proof. Suppose that x(t) is a nonoscillatory solution of Eq. (1.2). Say x(t−m) >
0 for t ≥ t1 ≥ t0, where m = max{τ, σ1, σ2}. When x(t) is eventually negative,
the proof follows the same argument. Proceeding as in the proof of Theorem 1,
we can get ∫ t

t1

H(t, s)e(s)ds

= −
n−1∑
i=0

hi(t, t1)z
(n−i−1)(t1)

+

∫ t

t1

[H(t, s)q1(s)x
α(s− σ1)− hn(t, s)p(s)x(s− τ)]ds

+

∫ t

t1

[hn(t, s)x(s)−H(t, s)|q2(s)|xβ(s− σ2)]ds.

(2.10)
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Note that σ1 ≥ τ and σ2 ≤ 0, we have∫ t

t1

[H(t, s)q1(s)x
α(s− σ1)− hn(t, s)p(s)x(s− τ)]ds

=

∫ t

t1

H(t, s)q1(s)x
α(s− σ1)ds

−
∫ t+σ1−τ

t1+σ1−τ

hn(t, s+ τ − σ1)p(s+ τ − σ1)x(s− σ1)ds

≤
∫ t

t1

H(t, s)q1(s)x
α(s− σ1)ds

−
∫ t

t1
hn(t, s+ τ − σ1)p(s+ τ − σ1)x(s− σ1)ds

+

∫ t1+σ1−τ

t1

hn(t, s+ τ − σ1)p(s+ τ − σ1)x(s− σ1)ds,

(2.11)

and ∫ t

t1

[hn(t, s)x(s)−H(t, s)|q2(s)|xβ(s− σ2)]ds

=

∫ t

t1

hn(t, s)x(s)ds−
∫ t−σ2

t1−σ2

H(t, s+ σ2)|q2(s+ σ2)|xβ(s)]ds

≤
∫ t

t1

[hn(t, s)x(s)−H(t, s+ σ2)|q2(s+ σ2)|xβ(s)]ds

+

∫ t1−σ2

t1

H(t, s+ σ2)|q2(s+ σ2)|xβ(s)ds.

(2.12)

For x > 0, set

G1(x) = H(t, s)q1(s)x
α − hn(t, s+ τ − σ1)p(s+ τ − σ1)x,

and
G2(x) = hn(t, s)x−H(t, s+ σ2)|q2(s+ σ2)|xβ .

Then, we can easily see that G1 and G2 obtain their maximums at

x =

[
αH(t, s)q1(s)

hn(t, s+ τ − σ1)p(s+ τ − σ1)

]1/(1−α)

and

x =

[
hn(t, s)

βH(t, s+ σ2)|q2(s+ σ2)|

]1/(β−1)

,

respectively. We also have

Gmax
1 = Q1(t, s), Gmax

2 = Q2(t, s). (2.13)

Substituting (2.11)-(2.13) into (2.10) and dividing H(t, t1) on both sides of
(2.10), we get a contradiction with (2.8). The proof is complete. �
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Following the similar steps as in the proofs of Theorem 2.1 and Theorem 2.2,
we can extend Theorem 2.1 and Theorem 2.2 to the case of mixed time-varying
arguments. We assume here that τ, σ1, σ2 ∈ C1[t0,∞) are time-varying de-
layed or advanced arguments satisfying limt→∞ τ(t) = ∞, limt→∞ σ1(t) = ∞,
limt→∞ σ2(t) = ∞ and τ ′(t), σ′

1(t), σ
′
2(t) > 0 on [t0,∞). Set f−1 to be the in-

verse of f and (f ◦ g)(t) = f(g(t)). By repeating the procedure in the proof of
Theorem 2.1 and Theorem 2.2, we have the following oscillation results for Eq.
(1.1) with time-varying arguments.

Theorem 2.3. Assume that (A1) − (A4) hold, q1(t) ≤ 0, q2(t) > 0, σ1(t) ≤ t
and σ2(t) ≥ τ(t). If there exists a kernel function H(t, s) satisfying (a) and (b)
such that

lim sup
t→∞

1

H(t, r)

∫ t

r

[H(t, s)e(s) + P̃1(t, s) + P̃2(t, s)]ds = +∞ (2.14)

and

lim inf
t→∞

1

H(t, r)

∫ t

r

[H(t, s)e(s)− P̃1(t, s)− P̃2(t, s)]ds = −∞ (2.15)

hold for some r ≥ t0, where

P̃1(t, s) = (α− 1)α
α

1−α [hn(t, σ1(s))σ
′
1(s)]

α
α−1 [H(t, s)|q1(s)|]

1
1−α ,

P̃2(t, s) = (1− β)β
β

1−β [hn(t, s)p(s)]
β

β−1

×[H(t, (σ−1
2 ◦ τ)(s))q2((σ−1

2 ◦ τ)(s))((σ−1
2 ◦ τ)(s))′]

1
1−β ,

then Eq. (1.1) is oscillatory.

Theorem 2.4. Assume that (A1)− (A4) hold, q1(t) ≥ 0, q2(t) < 0, σ1(t) ≤ τ(t)
and σ2(t) ≥ t. If there exists a kernel function H(t, s) satisfying (a) and (b)
such that

lim sup
t→∞

1

H(t, r)

∫ t

r

[H(t, s)e(s)− Q̃1(t, s)− Q̃2(t, s)]ds = +∞ (2.16)

and

lim inf
t→∞

1

H(t, r)

∫ t

r

[H(t, s)e(s) + Q̃1(t, s) + Q̃2(t, s)]ds = −∞ (2.17)

hold for some r ≥ t0, where

Q̃1(t, s) = (1− α)α
α

1−α [H(t, s)q1(s)]
1

1−α

×[hn(t, (τ
−1 ◦ σ1)(s))p((τ

−1 ◦ σ1)(s))((τ
−1 ◦ σ1)(s))

′]
α

α−1 ,

Q̃2(t, s) = (β − 1)β
β

1−β [hn(t, s)]
β

β−1 [H(t, σ−1
2 (s))|q2(σ−1

2 (s))|(σ−1
2 (s))′]

1
1−β ,

then Eq. (1.1) is oscillatory.
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As an interesting application, we apply the method used in this paper to the fol-
lowing higher-order differential equation with delayed and advanced arguments
and mixed nonlinearities:

x(n)(t)+q1(t)|x(t−σ1)|α−1x(t−σ1)+q2(t)|x(t−σ2)|β−1x(t−σ2) = e(t), (2.18)

where t ≥ t0. We have the following oscillation results for Eq. (2.18).

Corollary 2.5. Assume that (A1)− (A4) hold, q1(t) ≤ 0, q2(t) > 0, σ1 ≥ 0 and
σ2 ≤ 0. If there exist a constant γ > 0 and a kernel function H(t, s) satisfying
(a) and (b) such that (2.1) and (2.2) hold for some r ≥ t0, where

P1(t, s) = (α− 1)α
α

1−α [(1 + γ)hn(t, s− σ1)]
α

α−1 [H(t, s)|q1(s)|]
1

1−α ,

P2(t, s) = (1− β)β
β

1−β [H(t, s+ σ2 − τ)q2(s+ σ2 − τ)]
1

1−β [γhn(t, s)p(s)]
β

β−1 ,

then Eq. (2.18) is oscillatory.

Proof. In fact, if we rewrite Eq. (2.16) into the following form

z(n)(t) + q1(t)|x(t− σ1)|α−1x(t− σ1) + q2(t)|x(t− σ2)|β−1x(t− σ2) = e(t),

where z(n)(t) = (1 + γ)x(n)(t) − γx(n)(t). Then, proceeding as in the proof of
Theorem 2.1 yields the desired result. �
Based on proofs of Theorem 2.2-Theorem 2.4 and the analysis of Corollary 2.1,
we have the following corollaries.

Corollary 2.6. Assume that (A1)− (A4) hold, q1(t) ≥ 0, q2(t) < 0, σ1 ≥ 0 and
σ2 ≤ 0. If there exist a constant γ > 0 and a kernel function H(t, s) satisfying
(a) and (b) such that (2.8) and (2.9) hold for some r ≥ t0, where

Q1(t, s) = (1− α)α
α

1−α [H(t, s)q1(s)]
1

1−α [γhn(t, s+ τ − σ1)]
α

α−1 ,

Q2(t, s) = (β − 1)β
β

1−β [(1 + γ)hn(t, s)]
β

β−1 [H(t, s+ σ2)|q2(s+ σ2)|]
1

1−β ,

then Eq. (2.18) is oscillatory.

Corollary 2.7. Assume that (A1) − (A4) hold, q1(t) ≤ 0, q2(t) > 0, σ1(t) ≤ t
and σ2(t) ≥ t. If there exist a constant γ > 0 and a kernel function H(t, s)
satisfying (a) and (b) such that (2.14) and (2.15) hold for some r ≥ t0, where

P̃1(t, s) = (α− 1)α
α

1−α [(1 + γ)hn(t, σ1(s))σ
′
1(s)]

α
α−1 [H(t, s)|q1(s)|]

1
1−α ,

P̃2(t, s) = (1− β)β
β

1−β [γhn(t, s)p(s)]
β

β−1

×[H(t, (σ−1
2 ◦ τ)(s))q2((σ−1

2 ◦ τ)(s))((σ−1
2 ◦ τ)(s))′]

1
1−β ,

then Eq. (2.18) is oscillatory.

Corollary 2.8. Assume that (A1) − (A4) hold, q1(t) ≥ 0, q2(t) < 0, σ1(t) ≤ t
and σ2(t) ≥ t. If there exist a constant γ > 0 and a kernel function H(t, s)
satisfying (a) and (b) such that (2.16) and (2.17) hold for some r ≥ t0, where

Q̃1(t, s) = (1− α)α
α

1−α [H(t, s)q1(s)]
1

1−α

×[γhn(t, (τ
−1 ◦ σ1)(s))((τ

−1 ◦ σ1)(s))
′]

α
α−1 ,
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Q̃2(t, s) = (β − 1)β
β

1−β [(1 + γ)hn(t, s)]
β

β−1

×[H(t, σ−1
2 (s))|q2(σ−1

2 (s))|(σ−1
2 (s))′]

1
1−β ,

then Eq. (2.18) is oscillatory.

3. Examples

The following two examples are given to illustrate the main results.

Example 3.1. Consider the following second-order neutral differential equation

z′′(t)− tλ1 |x(t− σ1)|−1/2x(t− σ1) + (t+ 2)λ2 |x(t+ 1)|x(t+ 1) = tγ cos t, (3.1)

where t > 0, z(t) = x(t)− tρx(t− 1), σ1 > 0, λ1 > −1/2, λ2 − 2ρ < 1 and γ > 0
are constants. Let H(t, s) = (t− s)2. A straightforward computation yields

P1(t, s) = −1

8
(t− s)4s2λ1 , P2(t, s) = −(t+ 2− s)−2s2ρ−λ2 .

Therefore, ∫ t

0

P1(t, s)ds = −1

8
t5+2λ1B(2λ1 + 1, 5),

where B is the Beta function, B(2λ1 + 1, 5) > 0 due to λ1 > −1/2, and∫ t

0

P2(t, s)ds ≥ −1

4

∫ t

0

s2λ−λ2ds = − t1+2ρ−λ2

4(1 + 2ρ− λ2)
.

On the other hand,∫ t

0

(t− s)2sγ cos sds = t3+γ

∫ 1

0

(1− u)2uγ cos(tu)du = t3+γIγ(t), (3.2)

where Iγ(t) has the asymptotic formula

Iγ(t) = −Γ(3)t−3 sin t+ o(t−3) (3.3)

as t → ∞ (see [7] pp. 49-50). By Theorem 2.1, Eq. (3.1) is oscillatory if
γ > max{5 + 2λ1, 1 + 2λ− λ2}.

Example 3.2. Consider the following second-order neutral differential equation

z′′(t) + tλ1 |x(t− 1)|−1/2x(t− 1)− (t+ 1)λ2 |x(t+ 1)|x(t+ 1) = tγ cos t, (3.4)

where t > 0, z(t) = x(t)− tρx(t− 1), λ1 > (ρ− 1)/2 and λ2 < 1 are constants.
If we choose H(t, s) = (t− s)2, then we have

Q1(t, s) =
1

2
(t− s)4s2λ1−ρ, Q2(t, s) = (t+ 1− s)−1s−λ2 .

Thus, ∫ t

0

Q1(t, s)ds =
1

2
t5+2λ1−ρB(2λ1 − ρ+ 1, 5),

where B(2λ1 − ρ+ 1, 5) > 0 due to λ1 > (ρ− 1)/2, and∫ t

0

Q2(t, s)ds ≤
∫ t

0

s−λ2 =
t1−λ2

1− λ2
.
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By (3.2), (3.3) and Theorem 2.2, we have that Eq. (3.4) is oscillatory if γ >
max{5 + 2λ1 − λ, 1− λ2}.
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