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THE NUMBER OF SOLUTIONS TO THE EQUATION

(x+ 1)d = xd + 1
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Abstract. In this paper, we study the number of solutions to the equation

(x + 1)d = xd + 1 . This equation gives the value of the third power
sum equation in case of Niho type exponents and is helpful in finding the
distribution of the values Cd(τ). We provide the number of the solutions
using the new method.
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1. Introduction

Pseudorandom binary sequences of maximal period are widely used in many
areas of engineering and sciences due to their randomness but simplicity in
their generation. Some well-known applications include Code-Division Multiple-
Access(CDMA) mobile communications and stream-cipher system. Especially
families of binary sequences with low correlation have important applications in
CDMA communication systems and cryptography. Cross-correlation properties
of these sequences were studied due to their applications in sequence designs.
The cross-correlation between binary sequences lead to difficult problems and is
related to exponential sums over finite fields. Cross-correlation functions Cd(τ)
of maximal length sequences have been studied for about fifty years [3, 4]. Niho
[8], Helleseth [4] and Rosendahl [9] wrote the powerful theses on the topic. In
this paper p will be an arbitrary prime. We denote q = pk and d satisfies the
Niho condition d ≡ 1(mod q − 1). We study the number of solutions to the
equation (x + 1)d = xd + 1, where x ∈ GF (q2). Solving this equation gives

the value of the third power sum
∑pn−2

τ=0 (Cd(τ) + 1)3 and is helpful in finding
the distribution of the values Cd(τ). In addition, this equation is related to the
number of codewords of weight three in certain cyclic codes [7] and nonlinearity
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properties of power functions [1], which is of interest in cryptography. Niho used

the result due to Welch to treat the
∑pn−2

τ=0 (Cd(τ) + 1)3. And Rosendahl’s work
was mathematical throughout, the emphasis being on equations over finite fields.
For the theory of finite fields, we refer to [2, 5, 6]. In this paper we solve the
equation (x+ 1)d = xd + 1 using the new method.

2. Preliminaries

The cross-correlation function Cd(τ) between the sequences u(t) and v(t),
where v(t) = u(dt) (d = 1, . . . , pn − 2), is defined for τ = 0, 1, . . . , pn − 2 by

Cd(τ) =
∑pn−2

τ=0 (−1)u(t+τ)+v(t). Let x ∈ GF (q2). In analogy with the usual
complex conjugation we define x = xq. We define the unit circle of x ∈ GF (q2)
to be the set S = {x ∈ GF (pn)| xx = 1}. S is the group of (q + 1)-st roots of
unity in GF (q2). We will use the property of the group S in the proof of next
section.

The following theorem is useful in finding the distributions of values Cd(τ).
In particular, finding b in (c) is the main study of this paper. This is provided
in section 3.

Theorem 2.1 ([4, 8]). Let n = 2k and q = pk. For some integer d (d =
1, . . . , pn − 2), we have

(a)
∑pn−2

τ=0 (Cd(τ) + 1) = pn.

(b)
∑pn−2

τ=0 (Cd(τ) + 1)2 = p2n.

(c)
∑pn−2

τ=0 (Cd(τ) + 1)3 = p2nb,
where b is the number of x ∈ GF (q2) such that (x+ 1)d = xd + 1.

3. The number of solutions to the equation (x+ 1)d = xd + 1

Lemma 3.1. Let q = pk, where p is a prime and let d ≡ 1(mod q − 1). Then
x ∈ GF (q2) \ {0,−1} is a solution to

(x+1)d = xd+1 (3.1.1)

if and only if xd−1 = (x+ 1)d−1 = 1 or xd−q = (x+ 1)d−q = 1.

Proof. Since (x+ 1)d = xd + 1,

(x+1)d = (xq+1)d = (x+1)qd = {(x+1)d}q = (xd+1)q = xd+1. (3.1.2)

Thus

(xx+ x+ x+1)d = (xx)d + xd + xd +1. (3.1.3)

Since xx ∈ GF (q) and x + x ∈ GF (q), xx + x + x + 1 ∈ GF (q) and thus
(xx+ x+ x+ 1)d = xx+ x+ x+ 1 and (xx)d = xx. Therefore we have

xx+ x+ x+ 1 = xx+ xd + xd + 1, (3.1.4)

i.e.,

x+ x = xd + xd. (3.1.5)
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Multiply xd−q−1 to the both sides of (3.1.5), then

xd−q + xd−1 = x2d−q−1 + xqd+d−q−1. (3.1.6)

Since d ≡ 1(mod q − 1), there exists an integer s such that d − 1 = (q − 1)s.
Since

xqd+d−q−1 = x(q+1)(d−1) = x(q+1)(q−1)s = 1, (3.1.7)

we have

x2d−q−1−xd−q−xd−1+1 = (xd−1−1)(xd−q−1) = 0. (3.1.8)

Thus we have xd = x or xd = xq = x.
(i) xd = x : (x+ 1)d = xd + 1 = x+ 1 and thus (x+ 1)d−1 = 1.
(ii) xd = x : We have (x+ 1)d = x+ 1 = (x+ 1)q. Thus (x+ 1)d−q = 1.
Conversely, let xd−1 = (x + 1)d−1 = 1. Then (x + 1)d = x + 1 and xd = x and
thus (x + 1)d = x + 1 = xd + 1. Therefore x is a solution to (3.1.1). And let
xd−q = (x+ 1)d−q = 1. Then (x+ 1)d = (x+ 1)q = xq + 1 = xd + 1. Therefore
x is a solution to (3.1.1). �

Corollary 3.2. Let q = pk, where p is a prime and let d ≡ 1(mod q − 1). Then
x ∈ GF (q2) \ {0,−1} is a solution to

(x+1)d = xd+1 (3.2.1)

Then (x+1
x+1 )

d−1 = 1 or (x+1
x+1 )

d+1 = 1.

Proof. By Lemma 3.1 xd = x or xd = x. Also x+ x = xd + xd from (3.1.5).
(i) xd = x : Since xd = x from (3.1.5), we have

(
x+ 1

x+ 1
)d =

xd + 1

xd + 1
=

x+ 1

x+ 1

and thus (x+1
x+1 )

d−1 = 1.

(ii) xd = x : Since xd = x from (3.1.5), we have

(
x+ 1

x+ 1
)d =

xd + 1

xd + 1
=

x+ 1

x+ 1

and thus (x+1
x+1 )

d+1 = 1. �

Lemma 3.3. Let d = (q − 1)s+ 1 and e = (q − 1)t+ 1. Assume that

gcd(s, q+1) = gcd(t, q+1) , gcd(s−1, q+1) = gcd(t−1, q+1). (3.3.1)

Then x ∈ GF (q2) is a solution to (3.1.1) if and only if x satisfies

(x+1)e = xe+1. (3.3.2)
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Proof. Since every x ∈ GF (q) is a solution to (3.1.1), we may assume that
x ∈ GF (q2)\{0,−1}. Let x be a solution to (3.1.1). Then by Lemma 3.1 xd−1 =
(x+1)d−1 = 1 or xd−q = (x+1)d−q = 1. Since xd = x, xd = x(q−1)s ·x = x and

thus x(q−1)s = 1. Since xq2−1 = 1 and

xgcd((q−1)t,q2−1) = (x(q−1))gcd(t,q+1) = (x(q−1))gcd(s,q+1) = xgcd((q−1)s,q2−1) = 1,

x(q−1)t = 1. Thus xe = x(q−1)t+1 = x(q−1)t · x = x. Now assume that xd = x.
Then

1 = xd−q = x(q−1)(s−1). (3.3.3)

Since xq2−1 = 1 and xgcd((q−1)(s−1)s,q2−1) = xgcd((q−1)(t−1),q2−1),
xe−q = x(q−1)(t−1) = 1. Thus xe = x. Similarly we can prove that (x+1)e = x+1
and (x+ 1)e = (x+ 1)q. Therefore xe−1 = (x+ 1)e−q = 1. Thus by Lemma 3.1
x is a solution to (3.3.2). The converse proof for d is the same as the proof for
e. This completes the proof. �

Lemma 3.4. Let q = pk be odd. Assume that d = (q − 1)s + 1. Let gcd(s, q +
1) · gcd(s− 1, q + 1) = 2. Then gcd(d− 1, q + 1)|4 and gcd(d+ 1, q + 1)|4.

Proof.

gcd(d− 1, q + 1) = gcd((q − 1)s, q + 1)

= gcd((q + 1)s− 2s, q + 1)

= gcd(2s, q + 1)

gcd(d+ 1, q + 1) = gcd((q − 1)s+ 2, q + 1)

= gcd((q + 1)s− 2s+ 2, q + 1)

= gcd(2(s− 1), q + 1)

If gcd(s, q + 1) = 2andgcd(s− 1, q + 1) = 2, then gcd(d− 1, q + 1) = 2 or 4 and
gcd(d+ 1, q + 1) = 2.
If gcd(s, q + 1) = 1andgcd(s − 1, q + 1) = 2, then gcd(d − 1, q + 1) = 2 and
gcd(d+ 1, q + 1) = 2 or 4. �

Lemma 3.5. Let x ∈ GF (q2) \ {0,−1}, where q = pk is odd and let x /∈ GF (q)
such that x2 = −1. Then ord((x+ 1)q−1) > 2.

Proof. Since xq ̸= x,

{(x+ 1)q−1}2 = (x2 + 2x+ 1)q−1 = 2q−1xq−1 = xq−1 ̸= 1.

Thus ord((x+ 1)q−1) > 2. �

Theorem 3.6. Let q = pk be odd. Assume that d ≡ 1(mod q − 1). And let
gcd(s, q + 1) · gcd(s− 1, q + 1) = 2. Then

{x ∈ GF (q2)|(x+1)d = xd+1} = GF (q). (3.6.1)
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Proof. We may assume that x ∈ GF (q2) \ {0,−1}. By Lemma 3.1 xd = x or
xd = x. Let A be the left side of (3.6.1). Since every x ∈ GF (q) is a solution to
(3.1.1), GF (q) ⊂ A. Suppose that x ∈ A and x /∈ GF (q).

(I) gcd(d − 1, q + 1) = gcd(d + 1, q + 1) = 2: Since gcd(d ± 1, q + 1) = 2
and x+1

x+1 ∈ S by Corollary 3.2

(
x+ 1

x+ 1
)2 = 1. (3.6.2)

Thus x2 + 2x+ 1 = x2 + 2x+ 1. Therefore (x− x)(x+ x+ 2) = 0. Since x ̸= x,

x+ x = −2. (3.6.3)

(i) xd = x: In this case xd−1 = x(q−1)s = 1.

Thus (xq−1)gcd(s,q+1) = xgcd((q−1)s,q2−1) = 1. Since gcd(s, q + 1)|2, x2(q−1) = 1.
Thus x2 = x2q = x2(q−1) ·x2 = x2. Therefore x2−x2 = (x−x)(x+x) = 0. Since
x /∈ GF (q), x+ x = 0. This is a contradiction to (3.6.3).
(ii) xd = x: In this case xd−q = x(q−1)(s−1) = 1. Thus (xq−1)gcd(s−1,q+1) =

xgcd((q−1)(s−1),q2−1) = 1. Since gcd(s − 1, q + 1)|2, x2(q−1) = 1. Thus x2 =
x2q = x2(q−1) · x2 = x2. Therefore x2 − x2 = (x − x)(x + x) = 0. Since
x /∈ GF (q), x + x = 0. This is a contradiction to (3.6.3). Therefore by (i)
and (ii) x ∈ GF (q).

(II) gcd(d− 1, q + 1) = 4 or gcd(d+ 1, q + 1) = 4: Since gcd(d− 1, q + 1) = 4 or
gcd(d+ 1, q + 1) = 4, by Corollary 3.2

(
x+ 1

x+ 1
)4 = 1. (3.6.4)

(i) xd = x: In this case xd−1 = x(q−1)s = 1.

Thus (xq−1)gcd(s,q+1) = xgcd((q−1)s,q2−1) = 1. Since gcd(s, q + 1)|2, x2(q−1) = 1.
Thus x2 = x2q = x2(q−1) ·x2 = x2. Therefore from (3.6.4) we obtain (x−x)(x2+
1) = 0. Since x /∈ GF (q), x2 = −1. Thus x4 = 1.
(a) If q ≡ 1(mod 4), then xq−1 = 1 and thus xq = x, i.e., x ∈ GF (q). This is a
contradiction.
(b) If q ≡ −1(mod 4), then xq+1 = 1. Since (x+1)d = (x+1)(q−1)s(x+1) = x+1,
(x + 1)(q−1)s = 1. Since {(x + 1)q−1}q+1 = 1, {(x + 1)q−1}gcd(s,q+1) = 1. And
thus {(x + 1)q−1}2 = 1. This means that ord((x + 1)q−1) ≤ 2. But by Lemma
3.5 ord((x+ 1)q−1) > 2. This is a contradiction.
(ii) xd = x: In this case xd−q = x(q−1)(s−1) = 1. Thus (xq−1)gcd(s−1,q+1) =

xgcd((q−1)(s−1),q2−1) = 1. Since gcd(s−1, q+1)|2, x2(q−1) = 1. Thus x2 = x2q =
x2(q−1) · x2 = x2. Therefore from (3.6.4) we obtain (x − x)(x2 + 1) = 0. Since
x /∈ GF (q), x2 = −1. Thus x4 = 1.
(a) If q ≡ 1(mod 4), then xq−1 = 1. This is a contradiction.
(b) If q ≡ −1(mod 4), then xq+1 = 1. Since (x+1)d = (x+1)(q−1)(s−1)(x+1)q =
xq+1, (x+1)(q−1)(s−1) = 1. Since {(x+1)q−1}q+1 = 1, {(x+1)q−1}gcd(s−1,q+1) =



184 Ji-Mi Yim, Sung-Jin Cho, Han-Doo Kim, Un-Sook Choi and Ji-Youn Choi

1. And thus {(x + 1)q−1}2 = 1. This means that ord((x + 1)q−1) ≤ 2. But by
Lemma 3.5 ord((x + 1)q−1) > 2. This is a contradiction. Hence by (I) and (II)
x ∈ GF (q). This completes the proof. �

Theorem 3.7. Assume that d ≡ 1(mod 2k − 1). If gcd(d± 1, 2k + 1) = 1, then

(x+1)d = xd+1 (3.7.1)

has exactly 2k solutions in GF (2n).

Proof. Since d ≡ 1(mod 2k−1), every x ∈ GF (2k) is a solution to (3.7.1). So we
may assume that x ̸= 0, 1 satisfies (3.7.1). Since x is a solution to (3.7.1), xd = x
or xd = x by Lemma 3.1. Let xd = x. Then by Corollary 3.2 (x+1

x+1 )
d−1 = 1. And

let xd = x. Then by Corollary 3.2 (x+1
x+1 )

d+1 = 1. Since gcd(d± 1, 2k + 1) = 1,

x+ 1

x+ 1
= 1. (3.7.2)

Thus x = x. This means that x ∈ GF (2k). �

Theorem 3.8. Assume that gcd(s, q + 1) > 2 or gcd(s− 1, q + 1) > 2. Then

{x ∈ GF (q2)|(x+1)d = xd+1} ̸= GF (q) (3.8.1)

Proof. Let gcd(s, q + 1) = w > 2. Then s = wa and q + 1 = wb, where

gcd(a, b) = 1. Let x0 = αb and x1 = α2b. Then x0 ̸= 1, x1 ̸= 1, x0 ̸= x1, x
q−1
0 ̸=

xq−1
1 and xd−1

0 = xd−1
1 = 1 because w > 2. Since (xq−1

0 )q+1 = (xq−1
1 )q+1 = 1,

{xq−1
0 , xq−1

1 } ∈ S. Also xq−1
0 ̸= 1 and xq−1

1 ̸= 1. Let u0 =
x0x

q
1−x0x1

xq
0x1−x0x

q
1
and u1 =

xq
0x1−x0x1

xq
0x1−x0x

q
1
. Since xq−1

0 ̸= xq−1
1 , u0 and u1 are well-defined. Since

uq
0 = (

x0x
q
1−x0x1

xq
0x1−x0x

q
1
)q

=
xq
0x1−xq

0x
q
1

x0x
q
1−xq

0x1

= xq−1
0

x0x1−x0x
q
1

x0x
q
1−xq

0x1

= xq−1
0 u0

and xq−1
0 ̸= 1, uq

0 ̸= u0. Therefore u0 /∈ GF (q). Similarly we can show that

uq
1 = xq−1

1 u1. Since xq−1
1 ̸= 1, u1 /∈ GF (q). Also u1 = u0 + 1. Moreover,

ud−1
0 = u

(q−1)s
0 = (xq−1

0 )s = xd−1
0 = 1 (3.8.2)

and

ud−1
1 = u

(q−1)s
1 = (xq−1

1 )s = xd−1
1 = 1. (3.8.3)

By (3.8.2) and (3.8.3) we have

(u0+1)d = ud
1 = u1 = u0+1 = ud

0 +1. (3.8.4)

Hence u0 is a solution to (3.8.1) which is not in GF (q). For the case gcd(s−1, q+
1) > 2 we can prove (3.8.1) using the similar method of the case gcd(s, q + 1) >
2. �
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Lemma 3.9. Let q = pk for a prime p and d = (q − 1)s+ 1.
(a) If gcd(s − 1, q + 1) = 1 and gcd(s, q + 1) = pi + 1 for some integer i ≥ 1,
then gcd(d− 1, q + 1) = gcd(s, q + 1).
(b) If gcd(s−1, q+1) = pi+1 and gcd(s, q+1) = 1 for some integer i ≥ 1, then
gcd(d+ 1, q + 1) = gcd(s− 1, q + 1).

Proof. (I) Let p = 2.
a) gcd(s− 1, q + 1) = 1 and gcd(s, q + 1) = pi + 1: Since q + 1 is odd,

gcd(d− 1, q + 1) = gcd((q − 1)s, q + 1)
= gcd((q + 1)s+ 2s, q + 1)
= gcd(2s, q + 1)
= gcd(s, q + 1).

b) gcd(s− 1, q + 1) = pi + 1 and gcd(s, q + 1) = 1: Since q + 1 is odd,

gcd(d+ 1, q + 1) = gcd((q − 1)s+ 2, q + 1)
= gcd((q + 1)s− 2s+ 2, q + 1)
= gcd(2(s− 1), q + 1)
= gcd(s− 1, q + 1).

In fact, the conditions in (a) and (b) are not necessary.
(II) Let p be an odd prime.
By conditions (a) and (b), pi + 1 divides pk + 1. Thus i|k and k

i is odd.

Let pk + 1 = (pi + 1) · a. Then

pk+1 = (pi+1){[(pi)k/i−1− (pi)k/i−2]+ · · ·+[(pi)2−pi]+1}. (3.9.1)

Thus by equation (3.9.1) a is odd.
a) gcd(s− 1, q + 1) = 1 and gcd(s, q + 1) = pi + 1:
Since gcd(s, q + 1) = pi + 1, let s = (pi + 1)b where gcd(a, b) = 1. Then

gcd(d− 1, q + 1) = gcd((q − 1)s, q + 1)
= gcd((q + 1)s+ 2s, q + 1)
= gcd(2s, q + 1)
= gcd(2b(pi + 1), (pi + 1)a)
= (pi + 1)gcd(2b, a)
= pi + 1
= gcd(s, q + 1).

b) gcd(s− 1, q + 1) = pi + 1 and gcd(s, q + 1) = 1:
Since gcd(s− 1, q + 1) = pi + 1, let s− 1 = (pi + 1)c where gcd(a, c) = 1. Then

gcd(d+ 1, q + 1) = gcd(2(s− 1), q + 1)
= gcd(2c(pi + 1), (pi + 1)a)
= (pi + 1)gcd(2c, a)
= pi + 1
= gcd(s− 1, q + 1).

�
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Theorem 3.10. Let q = pk for a prime p and d = (q − 1)s + 1. Assume that
for some i ( i|k and k

i :odd ) (i) gcd(s− 1, q + 1) = 1 and gcd(s, q + 1) = pi + 1

or (ii) gcd(s− 1, q+ 1) = pi + 1 and gcd(s, q+ 1) = 1. Then the set of solutions
in GF (q2) to the following equation is GF (q) ∪GF (p2i).

(x+1)d = xd+1 (3.10.1)

Proof. Clearly every x ∈ GF (q) is a solution to (3.10.1). So we may assume
that x /∈ GF (q). Then xq = x ̸= x. Since x is a solution to (3.10.1), xd = x or
xd = x by Lemma 3.1. By Corollary 3.2

(
x+ 1

x+ 1
)
d−1

= 1 or (
x+ 1

x+ 1
)
d+1

= 1 (3.10.2)

Since x+1
x+1 ∈ S, (x+1

x+1 )
q+1

= 1. By Lemma 3.9, gcd(d − 1, q + 1) = pi + 1 or

gcd(d+ 1, q + 1) = pi + 1. Thus (x+1
x+1 )

pi+1
= 1. Therefore

xpi+1+xpi

+x+1 = xpi+1+xpi

+x+1. (3.10.3)

Since (xq−1)q+1 = 1 and (xq−1)s = xd−1 = 1, (xq−1)gcd(s,q+1) = 1. Thus by

hypothesis (xq−1)p
i+1 = 1. Therefore

xpi+1 = (xq)p
i+1 = (xq−1)p

i+1xpi+1 = xpi+1. (3.10.4)

Thus we obtain

xpi

+x = xpi

+x, (3.10.5)

i.e.,

xpi

−xpi

= x−x. (3.10.6)

Since x ̸= x,

xpi−1+xpi−2x+xpi−3x2+· · ·+xxpi−2+xpi−1+1 = 0. (3.10.7)

From (3.10.7) we obtain

xpi

(1+xq−1+x2(q−1)+· · ·+x(pi−2)(q−1)+x(pi−1)(q−1)) = −x. (3.10.8)

Since (xq−1)p
i+1 = 1 by (3.10.4),

1+xq−1+x2(q−1)+· · ·+x(pi−1)(q−1)+xpi(q−1) =
1− (xq−1)p

i+1

1− xq−1
= 0. (3.10.9)

Thus

xpi

·xpi(q−1) = x. (3.10.10)

Therefore xpi

= x. And thus from (3.10.5) we have xpi

= x = xpk

. So

xp2i

= (xpi

)p
i

= (xpi

)p
k

= xpi

= x. (3.10.11)

Hence x ∈ GF (p2i).
Now we show that every x ∈ GF (p2i) is a solution to (3.10.1).
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(a) pi + 1|s : Since i|k , pi − 1 divides q − 1. Thus q − 1 = (pi − 1)u1 for some
integer u1. Since s = (pi + 1)u2 for some u2,

d− 1 = (q − 1)s = (pi − 1)u1(p
i + 1)u2 = (p2i − 1)u1u2.

Thus d ≡ 1(mod p2i − 1). Hence x is a solution to (3.10.1).
(b) (pi + 1)|(s− 1): Since i|k, (pi − 1) divides (q − 1). Thus q − 1 = (pi − 1)u3

for some integer u3. Since s− 1 = (pi + 1)u4 for some u4,

d− q = (q − 1)(s− 1) = (p2i − 1)u3u4.

Thus d ≡ q = pk(mod p2i−1). Hence x is a solution to (3.10.1). This completes
the proof. �

Remark 3.11. Since i|k , GF (q) ∩ GF (p2i) = GF (pi). Thus the number of
solutions to (3.10.1) is pk + p2i − pi.

4. Conclusion

The equation (x+1)d = xd+1 gives the value of the third power sum equation
in case of Niho type exponents and is helpful in finding the distribution of the
values Cd(τ). In this paper we solved the equation (x+1)d = xd+1 and provided
the number of the solutions by using the new method different to method of Niho.
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