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COMMON FIXED POINT THEOREMS FOR HYBRID MAPS

IN NON-ARCHIMEDEAN FUZZY METRIC SPACES

T. K. SAMANTA∗ AND SUMIT MOHINTA

Abstract. In this paper, we have established some common fixed point
theorems for two pairs of occasionally weakly compatible hybrid maps sat-

isfying a strict contractive condition in a non-archimedean fuzzy metric
space. Our result extend, generalized and fuzzify several fixed point theo-
rems on metric space.
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1. Introduction

Fixed point of functions and operators are important in many classical math-
ematical areas ranging from analysis to dynamical systems to geometry etc. So
many articles on fixed point theorem for single valued map have been writ-
ten under different contractive conditions. B. Fisher [5] initiated the study of
fixed point for hybrid maps and thereafter many authors [3, 1] etc. tried to de-
velop this concept for hybrid maps under different contractive conditions. But,
the concepts of weak compatibility and occasionally weak compatibility were
frequently used to prove existence theorems in fixed and common fixed point
for hybrid maps satisfying certain conditions in different spaces. The study of
common fixed point on occasionally weakly compatible maps is new and also
interesting. Works along these lines have recently been initiated by Jungck and
Rhoades [8] in 2006 and by Abbas and Rhoades [2] in 2007.
Fuzzy set theory, a generalization of crisp set theory, was first introduced by
Zadeh [15] in 1965 to describe situations in which data are imprecise or vague or
uncertain. Consequently, the last three decades remained productive for various
authors [6, 12, 4] etc. have extensively developed the theory of fuzzy sets due to

Received December 8, 2011. Revised June 26, 2012. Accepted July 5, 2012. ∗Corresponding

author.

c⃝ 2013 Korean SIGCAM and KSCAM.

155



156 T. K. Samanta and Sumit Mohinta

a wide range of application in the field of population dynamics , chaos control ,
computer programming , medicine , etc. Kramosil and Michalek [11] introduced
the concept of fuzzy metric spaces ( briefly , FM-spaces ) in 1975, which opened
an avenue for further development of analysis in such spaces.
In this paper, our target is to establish some common fixed point theorems for
two pairs of occasionally weakly compatible hybrid maps satisfying a strict con-
tractive condition in a non-archimedean fuzzy metric space. Our result extend,
generalized and fuzzify several fixed point theorems on metric space.

2. Preliminaries

We quote some definitions and statements of a few theorems which will be
needed in the sequel.

Definition 2.1 ([13]). A binary operation ∗ : [ 0 , 1 ] × [ 0 , 1 ] −→ [ 0 , 1 ]
is continuous t - norm if ∗ satisfies the following conditions :
( i ) ∗ is commutative and associative;
( ii ) ∗ is continuous;
( iii ) a ∗ 1 = a ∀ a ε [ 0 , 1 ];
( iv ) a ∗ b ≤ c ∗ d whenever a ≤ c , b ≤ d and a , b , c , d ε [ 0 , 1 ].

Result 2.1 ([10]). ( a ) For any r 1 , r 2 ∈ ( 0 , 1 ) with r 1 > r 2, there exists
r 3 ∈ ( 0 , 1 ) such that r 1 ∗ r 3 > r 2;
( b ) For any r 5 ∈ ( 0 , 1 ) , there exist r 6 ∈ ( 0 , 1 ) such that r 6 ∗ r 6 ≥ r 5.

Definition 2.2 ([7]). The 3 -tuple (X , µ , ∗ ) is called a fuzzy metric space
if X is an arbitrary non-empty set, ∗ is a continuous t-norm and µ is a fuzzy
set in X2 × (0,∞) satisfying the following conditions :
( i ) µ (x , y , t ) > 0 ;
( ii ) µ (x , y , t ) = 1 if and only if x = y ;
( iii ) µ (x , y , t ) = µ ( y , x , t );
( iv ) µ (x , y , s ) ∗ µ ( y , z , t ) ≤ µ (x , z , s + t ) ;
( v ) µ (x , y , · ) : (0 , ∞ ) → (0 , 1] is continuous
for all x , y , z ∈ X and t, s > 0.

Note that µ (x , y , t ) can be thought of as the degree of nearness between x
and y with respect to t .

Example 2.1. Let X = [ 0 , ∞ ) , a ∗ b = a b for every a , b ∈ [ 0 , 1 ] and

d be the usual metric defined on X. Define µ (x , y , t ) = e− d ( x , y )
t for all

x , y ∈ X. Then clearly (X , µ , ∗ ) is a fuzzy metric space.

Example 2.2. Let (X , d ) be a metric space, and let a ∗ b = a b or a ∗ b =
min { a , b } for all a , b ∈ [ 0 , 1 ]. Let µ (x , y , t ) = t

t + d ( x , y ) for all

x , y ∈ X and t > 0. Then (X , µ , ∗ ) is a fuzzy metric space and this fuzzy
metric µ induced by d is called the standard fuzzy metric [6].
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Note 2.1. George and Veeramani [6] proved that every fuzzy metric space is a
metrizable topological space. In this paper, also they have proved, if (X , d ) is
a metric space, then the topology generated by d coincides with the topology
generated by the fuzzy metric µ of example (2.2). As a result, we can say that
an ordinary metric space is a special case of fuzzy metric space.

Note 2.2. Consider the following condition :
( iv ′ ) µ (x , y , s ) ∗ µ ( y , z , t ) ≤ µ (x , z , max { s , t } ) ;
If the condition (iv) in the definition (2.2) is replaced by the condition ( iv ′ ),
the fuzzy metric space (X , µ , ∗ ) is called a non−archimedean fuzzy metric
space .

Definition 2.3 ([14]). Let (X , µ , ∗ ) be a fuzzy metric space.
A sequence {xn }n in X is said to converge to x ∈ X if and only if

lim
n → ∞

µ (xn , x , t ) = 1 for each t > 0 .

A subset P of X is said to be closed if for any sequence {xn } in P converges
to x ∈ P, that is,

lim
n → ∞

µ (xn , x , t ) = 1 =⇒ x ∈ P ∀ t > 0 .

A subset P of X is said to be bounded if and only if there exists t > 0 , r ∈
( 0 , 1 ) such that

µ (x , y , t ) > 1 − r ∀ x , y ∈ X .

Remark 2.1. In fuzzy metric space X , for all x , y ∈ X , µ (x , y , · ) is
non−decreasing with respect to the variable t. In fact, in a non−archimedean
fuzzy metric space, µ (x , y , t ) ≥ µ (x , z , t ) ∗ µ ( z , y , t ) for x , y , z ∈ X,
t > 0. Every non−archimedean fuzzy metric space is also a fuzzy metric space.

Through out this paper X will represent a non−archimedean fuzzy metric
space (X , µ , ∗ ) and CB(X ) , the set of all non−empty closed and bounded
sub−set of X . We recall a few usual notations : for x ∈ X , A ⊆ X and for
every t > 0 ,

µ (x , A , t ) = max{µ (x , y , t ) : y ∈ A }
Let H be the associated Hausdorff fuzzy metric on CB(X ) : for every A , B
in CB(X ) ,

H (A , B , t ) = min

{
min
x ∈ A

µ (x , B , t ) , min
y ∈ B

µ (A , y , t )

}
and let δ (A , B , t ) be the function defined by

δ (A , B , t ) = min {µ ( a , b , t ) : a ∈ A , b ∈ B }
If A consists of a single point a , we write δ (A , B , t ) = δ ( a , B , t ) . If B
also consists of a single point b , we write δ (A , B , t ) = δ (A , b , t ). It follows
immediately from the definition that

δ (A , B , t ) = δ (B , A , t ) ≥ 0 ,
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δ (A , B , t ) ≥ δ (A , C , t ) ∗ δ (C , B , t ) ,

δ (A , B , t ) = 1 ⇐⇒ A = B = {a} ,

for all A , B , C in CB(X ) .

Definition 2.4. A sequence {An} of nonempty subsets of X is said to be
convergent to a subset A of X if the following holds :
( i ) for each point a ∈ A , there is a sequence {an} in X such that an ∈ An

for n = 1 , 2 , · · · , and {an} converges to a in (X , µ , ∗ ).
( ii ) given ϵ > 0 , there exists a positive integer m such that An ⊆ A ϵ for
n > m ,where A ϵ denotes the set of all points x in X for which there exists
a point a in A , depending on x , such that µ (x , a , t ) > ϵ for all t > 0. A
is then said to the limit of the sequence {An }.

Through this section, we suppose that f : X → X , F : X → CB(X ).

Definition 2.5. A point x ∈ X is called a coincidence point ( resp. fixed
point ) of the hybrid pair ( f , F ) if fx ∈ Fx ( resp. x = fx ∈ Fx )

Definition 2.6. The hybrid pair ( f , F ) is said to be compatible if fFx ∈
CB(X) for all x ∈ X and

lim
n → ∞

H ( fFxn , Ffxn , t ) = 1

whenever {xn } is a sequence in X such that Fxn → M ∈ CB(X) and
fxn → x ∈ M .

Definition 2.7 ([9]). The hybrid pair ( f , F ) is said to be weakly com-
patible if they commute at coincidence points. ie., if fFx = Ffx whenever
fx ∈ Fx .

Definition 2.8 ([2]). The hybrid pair ( f , F ) is said to be occasionally
weakly compatible (owc ) if there exists some point x ∈ X such that fx ∈
Fx and fFx ⊆ Ffx .

Example 2.3. Let X = [ 1 , ∞ ) with the usual metric . Define f : X → X
and F : X → CB(X ) by , for all x ∈ X ,

fx = x + 1 , Fx = [ 1 , x + 1 ]

fx = x + 1 ∈ Fx and fFx = [ 2 , x + 2 ] ⊂ Ffx = [ 1 , x + 2 ]

Hence, f and F are occasionally weakly compatible but non weakly compatible.

Definition 2.9. Let F : X → 2X be a set-valued map on X . x ∈ X is a
fixed point of F if x ∈ Fx .
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3. General fixed point theorems

Theorem 3.1. Let f , g : X → X be mappings and F , G : X → CB(X )
be set-valued maps such that the pairs {f , F} and {g , G} are owc. Let φ :
R 5 → R be a real map satisfying the following conditions :

(φ 1) : φ is increasing in variables t 4 and t 5

(φ 2) : φ( t , 1 , 1 , t , t ) > 1 ∀ t ∈ [ 0 , 1 )

If , for all x and y ∈ X for which

( ⋆ ) φ(µ ( fx , gy , t ) , µ ( fx , Fx , t ) , µ ( gy , Gy , t ) , µ ( fx , Gy , t ) ,

µ ( gy , Fx , t ) ) < 1

then f , g , F and G have a unique common fixed point .

Proof. ( i ) We being to show the existence of a common fixed point .
Since the pairs { f , F } and { g , G } are owc then , there exist u , v in X such
that fu ∈ Fu , gv ∈ Gv , fFu ⊆ Ffu and gGv ⊆ Ggv .
First , we show that gv = fu . The condition ( ⋆ ) implies that

φ (µ ( fu , gv , t ) , µ ( fu , Fu , t ) , µ ( gv , Gv , t ) , µ ( fu , Gv , t ) ,

µ ( gv , Fu , t ) ) < 1

=⇒ φ(µ ( fu , gv , t ) , 1 , 1 , µ ( fu , Gv , t ) , µ ( gv , Fu , t ) ) < 1

By (φ 1 ) we have

=⇒ φ(µ ( fu , gv , t ) , 1 , 1 , µ ( fu , gv , t ) , µ ( fu , gv , t ) ) < 1

which from (φ 2 ) gives µ ( fu , gv , t ) = 1 . So fu = gv .
Next , we prove that f 2u = fu . Then condition ( ⋆ ) implies that

φ(µ ( f 2u , gv , t ) , µ ( f 2u , Ffu , t ) , µ ( gv , Gv , t ) , µ ( f 2u , Gv , t ) ,

µ ( gv , Ffu , t ) ) < 1

=⇒ φ(µ( f 2u , fu , t ) , 1 , 1 , µ( f 2u , Gv , t ) , µ( fu , Ffu , t ) ) < 1

By (φ 1 ) we have

=⇒ φ(µ( f 2u , fu , t ) , 1 , 1 , µ( f 2u , fu , t ) , µ( fu , f 2u , t ) ) < 1

which , from (φ 2 ) , gives f
2u = fu .

Since ( f , F ) and ( g , G ) have the same role , we have gv = g 2v . Therefore,

ffu = fu = gv = ggv = gfu

and

fu = f 2u ∈ fFu ⊆ Ffu

So fu ∈ Ffu and fu = gfu ∈ Gfu . Then fu is common fixed point of
f , g , F and G .

( ii ) Now , we show uniqueness of the common fixed point .
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Put fu = w and let w
′
be another common fixed point of the four maps, then

by ( ⋆ ) , we get

φ(µ ( fw , gw
′
, t ) , µ ( fw , Fw , t ) , µ ( gw

′
, Gw

′
, t ) , µ ( fw , Gw

′
, t ) ,

µ ( gw
′
, Fw , t ) ) < 1

=⇒ φ(µ( fw , gw
′
, t ) , 1 , 1 , µ( fw , Gw

′
, t ) , µ( gw

′
, Fw , t ) ) < 1

By (φ 1 ) , we get

=⇒ φ(µ( fw , gw
′
, t ) , 1 , 1 , µ( fw , gw

′
, t ) , µ( fw , gw

′
t ) ) < 1

So , by (φ 2 ) , µ( fw , gw
′
, t ) = 1 and thus

µ( fw , gw
′
, t ) = µ(w , w

′
, t ) = 1 =⇒ w = w

′

This completes the proof. �
Theorem 3.2. Let f , g : X → X be maps and F , G : X → CB(X ) be set-
valued maps such that the pairs {f , F} and {g , G} are owc. Let φ : R 6 → R
be a real map satisfying the following conditions :

(φ 1) : φ is increasing in variables t 5 and t 6 ,

(φ 2) : for every t
′
, φ( t

′
, t , 1 , 1 , t , t ) > 1 ∀ t ∈ [ 0 , 1 )

If for all x and y ∈ X for which

( ⋆ ) φ(H (Fx , Gy , t ) , µ ( fx , gy , t ) , µ ( fx , Fx , t ) , µ ( gy , Gy , t ) ,

µ ( fx , Gy , t ) , µ ( gy , Fx , t ) ) < 1

then f , g , F and G have a unique common fixed point.

Proof. ( i ) We being to show the existence of a common fixed point .
Since the pairs { f , F } and { g , G } are owc then, there exist u , v in X such
that fu ∈ Fu , gv ∈ Gv , fFu ⊆ Ffu and gGv ⊆ Ggv .
First, we show that gv = fu . Then condition ( ⋆ ) implies that

φ(H (Fu , Gv , t ) , µ ( fu , gv , t ) , µ ( fu , Fu , t ) , µ ( gv , Gv , t ) ,

µ ( fu , Gv , t ) , µ ( gv , Fu , t ) ) < 1

=⇒ φ(H (Fu , Gv , t ) , µ ( fu , gv , t ) , 1 , 1 , µ ( fu , Gv , t ) ,

µ ( gv , Fu , t ) ) < 1

By (φ 1 ) we have

=⇒ φ(H (Fu , Gv , t ) , µ ( fu , gv , t ) , 1 , 1 , µ ( fu , gv , t ) ,

µ ( fu , gv , t ) ) < 1

which, from (φ 2 ), gives µ ( fu , gv , t ) = 1 . So fu = gv .
Next , we show that f 2u = fu . Then condition ( ⋆ ) implies that

φ(H (Ffu , Gv , t ) , µ ( f 2u , gv , t ) , µ ( f 2u , Ffu , t ) , µ ( gv , Gv , t ) ,

µ ( f 2u , Gv , t ) , µ ( gv , Ffu , t ) ) < 1

=⇒ φ(H (Ffu , Gv , t ) , µ( f 2u , fu , t ) , 1 , 1 , µ( f 2u , Gv , t ) ,
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µ( fu , Ffu , t ) ) < 1

By (φ 1 ) we have

=⇒ φ(H (Ffu , Gv , t ) , µ( f 2u , fu , t ) , 1 , 1 , µ( f 2u , fu , t ) ,

µ( f 2u , fu , t ) ) < 1

which, from (φ 2 ) , gives µ( f
2u , fu , t ) = 1 . We have f 2u = fu .

Since { f , F } and { g , G } have the same role, we have gv = g 2v . Therefore,

ffu = fu = gv = ggv = gfu

and
fu = f 2u ∈ fFu ⊂ Ffu

So fu ∈ Ffu and fu = gfu ∈ Gfu . Then fu is common fixed point of
f , g , F and G .

( ii ) Now , we show uniqueness of the common fixed point .

Put fu = w and let w
′
be another common fixed point of the four maps, then

by ( ⋆ ) , we get

φ(H (Fw , Gw
′
, t ) , µ ( fw , gw

′
, t ) , µ ( fw , Fw , t ) , µ ( gw

′
, Gw

′
, t ) ,

µ ( fw , Gw
′
, t ) , µ ( gw

′
, Fw , t ) ) < 1

=⇒ φ(H (Fw , Gw
′
, t ) , µ( fw , gw

′
, t ) , 1 , 1 , µ( fw , Gw

′
, t ) ,

µ( gw
′
, Fw , t ) ) < 1

By (φ 1 ) we get

=⇒ φ(H (Fw , Gw
′
, t ) , µ( fw , gw

′
, t ) , 1 , 1 , µ( fw , gw

′
, t ) ,

µ( fw , gw
′
, t ) ) < 1

So , by (φ 2 ) , µ( fw , gw
′
, t ) = 1 and thus

µ( fw , gw
′
, t ) = µ(w , w

′
, t ) = 1 =⇒ w = w

′

�

Theorem 3.3. Let f , g : X → X be maps and F , G : X → CB(X ) be set-
valued maps such that the pairs {f , F} and {g , G} are owc. Let φ : R 6 → R
be a real map satisfying the following conditions :
(φ 1) : φ is non−increasing in variables t 1 and non−decreasing in variables

t 5 and t 6 ,

(φ 2) : for every t
′
, φ( t , t , 1 , 1 , t , t ) > 1 ∀ t ∈ [ 0 , 1 ).

If for all x and y ∈ X for which

( ⋆ ) φ( δ (Fx , Gy , t ) , µ ( fx , gy , t ) , µ ( fx , Fx , t ) , µ ( gy , Gy , t ) ,

µ ( fx , Gy , t ) , µ ( gy , Fx , t ) ) < 1

then f , g , F and G have a unique common fixed point.
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Proof. The proof is similar to that of the theorem (3.2). �

4. Other type common fixed point theorems

Theorem 4.1. Let f , g : X → X be maps and F , G : X → CB(X ) be set-
valued maps such that the pairs {f , F} and {g , G} are owc. Let ψ : R → R
be a non-decreasing map such that , for every 0 ≤ l < 1 , ψ( l ) > l and
satisfying the following condition :

( ⋆ ) δ p (Fx , Gy , t ) ≥ ψ[ aµ p( fx , gy , t ) + ( 1 − a )µ
p
2 ( gy , Fx , t )

µ
p
2 ( fx , Gy , t ) ]

for all x and y ∈ X , where 0 < a ≤ 1 and p ≥ 1 . Then f , g , F and G
have a unique common fixed point .

Proof. Since f , F and g , G are owc, as in proof theorem 3.1 , there exist
u , v ∈ X such that fu ∈ Fu , gv ∈ Gv , fFu ⊆ Ffu , gGv ⊆ Ggv . ( i )
As in proof of theorem (3.1), we begin to show the existence of a common fixed
point . We have ,

δ p (Fu , Gv , t ) ≥ ψ[ aµ p( fu , gv , t ) + ( 1 − a )µ
p
2 ( gv , Fu , t )

µ
p
2 ( fu , Gv , t ) ]

and by the properties of δ and ψ , we get

µ p( fu , gv , t ) ≥ δ p (Fu , Gv , t ) ≥ ψ (µ p( fu , gv , t ) )

So , if 0 ≤ µ ( fu , gv , t ) < 1 , ψ(µ ( fu , gv , t ) ) > µ ( fu , gv , t ) , which
implies that

µ p( fu , gv , t ) ≥ δ p (Fu , Gv , t ) ≥ ψ (µ p( fu , gv , t ) ) > µ p( fu , gv , t )

which is a contradiction , thus we have µ( fu , gv , t ) = 1 hence fu = gv.
Again , if 0 ≤ µ( f 2u , gv , t ) < 1 then by ( ⋆ ) , we have

δ p (Ffu , Gv , t ) ≥ ψ[ aµ p( f 2u , gv , t ) + ( 1 − a )µ
p
2 ( gv , Ffu , t )

µ
p
2 ( f 2u , Gv , t ) ]

and hence

µ p( f 2u , fu , t ) ≥ δ p (Ffu , Gv , t ) ≥ ψ (µ p( f 2u , fu , t ) )

which implies

µ p( f 2u , fu , t ) ≥ δ p (Ffu , Gv , t ) ≥ ψ (µ p( f 2u , fu , t ) ) > µ p( f 2u , fu , t )

what it is impossible. Then we have µ( f 2u , fu , t ) = 1 hence f 2u = fu.
Similarly , we can prove that g 2v = gv .
Let fu = w then , fw = w = gw ,w ∈ Fw and w ∈ Gw , this completes
the proof of the existence .
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( ii ) For the uniqueness , let w
′

be a second common fixed point of f , g , F

and G . If 0 ≤ µ(w , w
′
, t ) < 1 then

µ(w , w
′
, t ) = µ( fw , gw

′
, t ) ≥ δ (Fw , Gw

′
, t )

and , by assumption ( ⋆ ) , we obtain

δ p (Fw , Gw
′
, t ) ≥ ψ[ aµ p( fw , gw

′
, t ) + ( 1 − a )µ

p
2 ( fw , Gw

′
, t )

µ
p
2 ( gw

′
, Fw , t ) ]

and thus

µ p(w , w
′
, t ) = µ p( fw , gw

′
, t ) ≥ δ p (Fw , Gw

′
, t ) ≥ ψ[µ p(w , w

′
, t )]

> µ p (w , w
′
, t )

which is a contradiction. So, we have µ(w , w
′
, t ) = 1 , that is , w = w

′
. �

Theorem 4.2. Let f , g : X → X be maps and F , G : X → CB(X ) be
set-valued maps such that there exist two elements u and v in X for which
fu ∈ Fu , fFu ⊆ Ffu and gv ∈ Gv , gGv ⊆ Ggv . Let ψ : R → R be a
non-decreasing map such that , for every 0 ≤ l < 1, ψ( l ) > l and satisfying
the following condition :

( ⋆ ) H p (Fx , Gy , t ) ≥ ψ[ aµ p( fx , gy , t ) + ( 1 − a )µ
p
2 ( gy , Fx , t )

µ
p
2 ( fx , Gy , t ) ]

for all x and y ∈ X , where 0 < a ≤ 1 and p ≥ 1.
If fu = gv , then fu is a common fixed point of f, g, F and G, and Fu = Gv.

Proof. We see that
µ(Fu , gv , t ) ≥ H (Fu , Gv , t ) , µ( fu , Gv , t ) ≥ H (Fu , Gv , t )
µ(Ffu , gv , t ) ≥ H (Ffu , Gv , t ) and µ( f 2u , Gv , t ) ≥ H (Ffu , Gv , t )
From the nondecreasing property of ψ , we obtain

H p (Ffu , Gv , t ) ≥ ψ[ aµ p( f 2u , gv , t ) + ( 1 − a )µ
p
2 ( gv , Ffu , t )

µ
p
2 ( f 2u , Gv , t ) ]

≥ ψ[ aµ p( f 2u , gv , t )+ ( 1− a )H p (Ffu , Gv , t ) ] ,

H p (Fu , Gv , t ) ≥ ψ[ aµ p( fu , gv , t ) + ( 1 − a )H p (Fu , Gv , t ) ] ,

H p (Fu , Ggv , t ) ≥ ψ[ aµ p( fu , g 2v , t ) + ( 1 − a )H p (Fu , Ggv , t ) ]

Now we suppose that fu = gv. From the first inequality, we see that

H p (Ffu , Gv , t ) ≥ ψ[ aµ p( f 2u , gv , t ) + ( 1 − a )H p (Ffu , Gv , t ) ]

≥ ψ[H p (Ffu , Gv , t ) ]

If 0 ≤ H p (Ffu , Gv , t ) < 1 then we see that

H p (Ffu , Gv , t ) ≥ ψ[H p (Ffu , Gv , t ) ] > H p (Ffu , Gv , t ) ,

which is a contradiction and this contradiction shows that H p (Ffu , Gv , t ) =
1 , which implies that Ffu = Gv. Similarly, also we have Fu = Gv and
Fu = Ggv. This completes the proof. �
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