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RESPONSES OF DAMPED HARMONIC OSCILLATORS TO

EXCITATIONS OBEYING POISSON DISTRIBUTIONS

HYOUNG-IN LEE∗ AND JINSIK MOK

Abstract. External excitations are employed to investigate properties of
optical media, with measurement data often analyzed via linear response
theory. In this respect, external forcing is modeled here by well-known
Poisson and negative-binomial distributions. Ensuing dynamics is exam-

ined with a special attention to the relative decay rates of damped har-
monic oscillators to such external forcing, along with its relationship to
other physical phenomena.
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1. Introduction

Linear responses of harmonic oscillators to external forcing are very useful to
understanding fundamental workings of materials [1, 2]. In particular, damped
harmonic oscillators (DHOs) have been employed to examine various materials
ranging from superconductors [1], electronics [3], and plasmonics [4], to name a
few. For instance, electric polarizability can be inferred by illuminating lights
on optical media. Even with nonlinearity disregarded, linear response theory
gets complicated as physics becomes more closely modeled. There are several
factors contributing to this increased complexity: (i) the number of oscillators
and associated coupling [3, 5], (ii) the presence of damping, and (iii) the types
of external forcing. When it comes to DHOs, clear-cut demarcations among
these three ingredients get blurred [1]. In particular, optical damping involves
a close interplay between a system (if properly definable) and its environment.
Energy transfer is sometimes enhanced by damping while energy content itself
is diminished [4]. Therefore, damping renders a system non-conservative, for
which both classical and quantum mechanical formulations are still imperfect
[6].
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In this article, we investigate effects of external forcing on DHOs from a view-
point of classical mechanics. In particular, we focus on forcing obeying Poisson
distributions because excitations modeled even as single square–shaped pulses
are distributed with certain decay rates when resolved on finer time scales. Fur-
thermore, multiple exciters can be considered to be composed of a parallel array
of time–decaying excitation agents. In this respect, we assume these exciters
to obey well–known statistics of either Poisson or negative–binomial distribu-
tion [7] – [11]. In particular, the negative–binomial distribution is suitable for
describing particle branching processes involving decays [9]. We focus in this
article on addressing various physical ramifications of ensuing dynamics under
such excitations by either analytical or numerical means.

In the linear response of a DHO to external forcing f(t), a crucial role is
played by the relative magnitudes of two time scales. As the first, the decay rate
γ of a DHO stands, e.g., for inelastic scattering within lossy metals, which occurs
in photon–electron interactions often examined in plasmonics [4]. As the second,
another decay rate a characterizes forcing, which is here described by Poisson
distribution pn(at) ≡ (n!)−1(at)ne−at over a discrete support of integer n with
t as time. As regards photon counting in quantum optics, n refers to a finite
number of photons. With σ ≡ at, its first moment is given by np ≡⟨n⟩P= σ,
where the subscript P refers to “Poisson”. Beside, the Mandel Q-parameter is
found to be Qp = 0 (i.e., Poissonian). For convenience, we divide the decay–rate
regime into two: (i) over–decaying excitations with a > γ , and (ii) under-
decaying excitations with a < γ. Hence, we call the case a = γ equally decaying.
By a standard double–Poisson distribution, we consider the statistics obtained
by varying a over all positive real values, as will be discussed in Section 3. The
over–decaying regime is of particular interest to optical measurements, since
responses intrinsic to a system last longer than excitations for a < γ and they
are amenable to longer experimental observations. In one–atom–maser theory
[12], the damping-bases method relies on a similar principle.

2. Response to forcing obeying Poisson distribution

Consider mechanical vibrations of a single DHO, where its displacement x(t)
is governed by the following differential equation [1, 6].

ẍ+ 2γẋ+ kx = f(t)u(t− 0+) (1)

Here, γ ≥ 0 is damping, k ≡ γ2 + b2 a spring constant, and b ≥ 0 a quasi–
frequency. In optics, x refers to electric polarization of a given medium, whereas
f means an applied electric field. By a Heaviside unit step function u(t − 0+),
f is meant to be applied right after the initial state, so that initial conditions
(ICs) x0 ≡ x(0) and ẋ0 ≡ ẋ(0) remain valid for any f . However, u(t− 0+) will
be henceforth omitted for simplicity.

Let us define variants of the ICs by by0 ≡ ż0 ≡ ẋ0 + γx0. Then, the solution
is written as x = xh + xp, with the homogeneous solution (HS) and particular
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solution (PS) denoted respectively by xh(t) and xp(t) . It is readily found that
xh(t) = (x0 cos(bt) + y0 sin(bt)) e

−γt. For f(t) = pn(at), which might represent
radiation pressure exerted by photons [13], xp(t) is found as follows.

xp(t) =
an

bn!

∫ t

0

(t− η)ne−a(t−η)e−γη sin(bη) dη. (2)

The RHS of Eq.(2) should be multiplied by n to account for a total force.
Therefore, xp here can be considered as a displacement in response to, say,
a single photon. Figure 1 shows trajectories on the phase plane of x and its
velocity ẋ. To this goal, we have numerically integrated Eq.(2). Panel (a) shows
a characteristic spiral trajectory with the clockwise direction of time evolution
indicated by arrows, where it approaches a quiescent state at the origin [6].

Figure 1. For given data n = 8 and γ = 0.1, solution trajectories on the
phase planes: (a) displacement x and velocity ẋ, and (b) external forcing
f vs. normalized displacement xp. (c) Solution trajectory on the plane of
reduced displacement X and velocity Y for n = 1 and γ = 0.49. Common

prescribed data are a = 0.5, b = 1, x0 = 1, and ẋ = 0.

Panel (b) is another presentation of the result of Panel (a), where the ordinate
is forcing f as input and the abscissa is x as output. The curve starting with
(x, f) = (1, 0) at t = 0 (out of the display window) appears to advance in the left
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direction almost along the x–axis. Before it approaches (x, f) = (0, 0) as t → ∞,
it makes several turns, as indicated by the time arrows. Panel (b) is called a
pressure–volume (or force–displacement) diagram often employed in quantum
opto–mechanics [13]. On the other hand, Panel (c) shows Y (t) ≡ y(t)eγt versus
X(t) ≡ x(t)eγt, where by ≡ ẋ + γx, such that the decay–compensating factor
eγt is multiplied. The broken line in Panel (c) shows a “bounce”–type envelope
of the trajectory with a turning point approximately at X = 18 [1].

From energy consideration of Eq.1, U̇ + K̇ = ẋf − 4γK with the potential
energy U ≡ 0.5x2 and kinetic energy K ≡ 0.5ẋ2. Hence, the total work done
is defined by W ≡ Wh + Wp, where {Wh,Wp} ≡

∫∞
0

f(t){ẋh(t), ẋp(t)} dt in
correspondence to the homogeneous and particular displacements. Numerically,
W is equal to the net area enclosed by the clockwise trajectories of a curve on
Figure 1(b), namely, the area(1)–area(2)–area(3) in rough estimate. Besides,
the total impulse

∫∞
0

f(t)dt is a−1n for f(t) = pn(at). With ρ2 ≡ (γ + a)2 + b2

and tan(θ0) ≡ b/(a+ γ), we employ contour integrals to find

Wh =
an

ρn+1
{ẋ0 cos((n+ 1)θ0)− b−1

⌊
(γ2 + b2)x0 + γẋ0

⌋
sin((n+ 1)θ0)}.

For Wh = 0, there is a constraint among ẋ0/bx0 of the ICs, γ/b, and a/b.
Through another double integration by numerical means, we obtain

Wp =
a2n

b(n!)2

∫ ∞

0

tne−2at

⌊∫ t

0

(t− τ)ne(a−γ)τ sin(bτ) dτ

⌋
dt.

Figure 2(a) plotting Wp against n shows that W < 0 for low n–values, whereas
W > 0 for high n–values. Here, we find almost monotonic decreases in |W | with
increasing n, irrespectively of a. Following the idea employed in meteoric obser-
vations [14], Figure 2(b) shows ϖ(n) ≡ |W (n+1)/W (n)| between two successive
works done, which turns out fairly constant for larger n–values. However, the
behaviors at small n–values are strongly dependent on the ICs among various
parameters.

Let us consider a few special cases. In an equally decaying case that γ = a

together with b ̸= 0 , we have xh(t) ∝ e−γt and xp(t) = (bn!)−1γne−γt
∫ t

0
(t −

η)n sin(bη) dη from Eq.(2). In a still further restrictive case that γ = a and
b = 0, pn(γt) = (n!)−1(γt)ne−γt and we obtain only a single–term response
xp(t) = ((n + 2)!)−1γntn+2e−γt with a 2–step overtone. We could exploit this
very special excitation to measure the damping γ = a by properly analyzing
output signals. For work done, Wp = γ−22−2n−3(n!(n + 2)!)−1(2n + 2) in this
case.

On the other hand, in the evanescent–wave–like case that b2 ≡ −b
2
< 0 and

k ≡ γ2 − b
2
with 0 ≤ b ≤ γ, we obtain xh = ⌊x0 cosh(bt) + b

−1
z0 sinh(bt)⌋e−γt.

In addition, Eq.(2) is changed for n > 0 into xp(t) ≡ (bn!)−1ane−at
∫ t

0
(t −

η)ne−(a−γ)η sinh(bη)dη in this case. Let us now examine another limit b = γ,
for which k = 0 in Eq.(1), thus meaning no restoring force as is the case with
free electrons under consideration in plasmonics [4]. In terms of electric-circuit,
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Figure 2. (a) Signed work done W vs. n for four a–values, with a
scaling |W |0.1sgn(W ) for better viewing contrast. (b) Ratio of works done

ϖ(n). Common prescribed data are γ = 1, b = 1, and a = 0.5, along with
x0 = 1 and ẋ0 = 0.

k = 0 corresponds to an infinite capacitance. Because the LHS of Eq.(1) reduces
now to ẍ + 2γẋ, the equal decay takes place not when a = γ, but when a =

2γ. In this case, Eq.(2) is integrated to xp(t) = (2γ)−2⌊(n!)−1
∫ 2γt

0
ηne−ηdη −

((n + 1)!)−1(2γt)n+1e−2γt⌋. Consequently, we have limt→∞ xp = 0.25γ−2 > 0.
Besides, xh(t) = 0.5x0(1 + e−2γt) + 0.5γ−1z0(1− e−2γt).

As yet another special case, consider f(t) =
∑∞

n=0 pn(at) = 1 accounting for
all the possible number of occurrences. It is like the situation where small
particles or large meteors of all sizes are taken into account in the respec-
tive fields of physics dealing with aggregates or clusters [8]. In our present
case, x = x∞ + (x0 − 1) cos(bt)e−γt + b−1(γ(x0 − 1) + ẋ0) sin(bt)e

−γt, with
x∞ ≡ (γ2 + b2)−1. Hence, starting out with x0, limt→∞ x(t) = x∞. With
this kind of summation, both single Poisson and negative–binomial distribu-
tions (for the latter, see next section) can be associated with an infinite number
of damped harmonic oscillators. This concept is important, since external forc-
ing can constitute a whole system along with the other two partners, namely,
a DHO–subsystem and its environment [1]. The coupling and energy transfer
among such DHOs will make the subject of our forthcoming article.

3. Responses to forcing of negative-binomial distribution

From physical viewpoint, the decay rate itself is not necessarily fixed. We
could model distributed decay rates with the help of another single–Poisson
distribution [7]. We are hence to examine a negative–binomial (NB) distribu-
tion, which exhibits an algebraic or sub–exponential decay in comparison to
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the exponential decay characterized by a single–Poisson distribution [8]. In-
terestingly enough, delayed luminescence discussed in biophotonics [10] is ad-
equately explained by such a NB distribution, because of hyperbolic-like long-
term afterglow in living systems. Consider a gamma distribution gµ(a, T ) ≡
(Γ(µ))−1Tµaµ−1e−Ta, where both µ and T are real–valued. In addition, the
corresponding average decay rate or its first moment is a ≡ ⟨a⟩G = T−1µ, where
the subscript G refers to “Gamma”. With gµ(a, T ) and another scaled time
τ ≡ T−1t, we define a NB distribution gµ(a, T ) as follows.

qµ,n(τ) ≡
∫ ∞

0

gµ(a, T )pn(at)da =
Γ(n+ µ)

n!Γ(µ)

τn

(1 + τ)n+µ
. (3)

The average of n taken with respect to qµ,t(τ) is nNB ≡ ⟨n⟩NB = µτ [8]. The
corresponding Mandel Q–factor is analytically found to be QNB = τ . Conse-
quently, qµ,n(τ) is super–Poissonian as is true with classical photon counting.
With a particular prescribed data µ = γ, qµ,n(τ) looks very similar to pn(σ) (not
shown). Figure 3(a) shows the resulting x(t) in response to f(t) = qµ,n(T

−1t)
with rather high damping. In comparison, Figure 3(b) shows responses to the
forcing with relatively small damping. We found from dynamics among qµ,n(τ)’s
with continuous µ that there are waves traveling on the τ − µ plane, which will
be discussed in a separate article.

Figure 3. Particular solutions for (a) high damping with µ = γ = 1
and (b) low damping with µ = γ = 0.1 . Common data are b = 1 and
T = 1, along with x0 = 1, and ẋ0 = 0.

4. Discussions and conclusion

To assess the importance of the net gain ∆ ≡ a − γ, we could formu-
late problem with Eq.(1) in two different manners along the reasoning of the
damping–bases method in quantum optics [12]. Let us consider a displacement
z(t) ≡ x(t)eat from the external–decay–based (EDB) viewpoint. Its homoge-
neous solution is then reduced to zh(t) = (x0 cos(bt)+y0 sin(bt))e

∆t. In addition,
its particular solution zp is determined from Eq.(1) by solving z̈p−2∆żp+κzp =
f(t) = (n!)−1(at)n. Therefore, from this EDB viewpoint, the parameter regimes
γ > a and γ < a refer to the loss and gain, respectively. In comparison to the



Responses of damped harmonic oscillators to excitations obeying Poisson distributions 117

original spring constant k, κ ≡ ∆2 + b2 is an effective spring constant from this
EDB viewpoint. It is found then that κ < k as long as 0 < a < 2γ, thereby
being terms “softening” of a spring. In the remaining regime 2γ < a, κ > k,
thus signifying “hardening”.

Equation (1) is equivalent to a pair of coupled equations ẏ = −kx and ẋ = y−
2γx+

∫ t

0+
f(τ)dτ , where x and y refer to the system and environmental variables,

respectively. It is clear from an auxiliary equation ÿ+ky = k⌊2γx−
∫ t

0+
f(τ)dτ⌋

that energy is irreversibly lost from x to y [1]. In this regard, the condition
for x to be of Poisson distribution will be interesting, given that forcing upon
x is of Poisson distribution. Incidentally, we might need a vector equation in
comparison to the scalar one in Eq.(1), in order to take light polarization into
account.

In summary, we have examined Poisson statistics for applied excitations ex-
erted on damped harmonic oscillators. By this way, we have been led to find a
central role played by two competing decay rates (intrinsic vs. external), which
in turn motivated us to consider distributed decay rates by negative–binomial
statistics. In addition, several ramifications of the current results have been
explained in terms of experimental measurements.
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