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SERIES SOLUTIONS TO INITIAL-NEUMANN BOUNDARY

VALUE PROBLEMS FOR PARABOLIC AND HYPERBOLIC

EQUATIONS
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Abstract. The purpose of this paper is to employ a new useful technique
to solve the initial-Neumann boundary value problems for parabolic, hy-
perbolic and parabolic-hyperbolic equations and obtain a solution in form

of infinite series. The results obtained indicate that this approach is indeed
practical and efficient.
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1. Introduction

The method of separation of variable for the solution of the partial differential
equations often leads to ordinary differential equations with variable coefficients
whose solutions are obtained either in the form of infinite series in term of special
functions. In particular, this method requires that the boundary conditions be
homogeneous. For inhomogeneous boundary conditions, a transformation for-
mula should be employed to transform inhomogeneous boundary conditions to
homogeneous boundary conditions. However, Adomian decomposition method
[1]-[4] has been proved to be powerful, effective, and can easily handle a wide class
of initial-boundary value problems for linear and nonlinear partial differential,
where the components of the solutions are elegantly computed by a recursive
relation. Therefore, the solution is obtained in a series form. An important
point can be made here in that the method attacks any homogeneous or inho-
mogeneous problem without any need for transformation formula. Further there
is no need to change the inhomogeneous boundary conditions to homogeneous
conditions as required by the method of separation of variables.
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Also, The finite difference method is one of several techniques for obtaining nu-
merical solutions to these types of equations and is discussed in many textbooks.
Ames [5], Cooper [6] and Morton and Mayers [7] provide a more mathematical
development of finite difference methods. See Cooper [6] for modern introduc-
tion to the theory of partial differential equations along with a brief coverage of
numerical methods. Also, the variational iteration method, Padé approximants
and other numerical methods are discussed in [7].

Here, we will prove results on the existence and uniqueness of the solutions to
initial-Neumann boundary value problems for linear parabolic, hyperbolic and
parabolic-hyperbolic equations, where the solution is searched in form of infinite
series u(t, x) =

∑∞
n=0 an(x)t

n. In such cases, a recursion formula is obtained to
calculate the unknown coefficients an. The most important feature of this method
is that it reduces the initial-Neumann value problems into ordinary differential
equations that can be easily handled.

2. Initial-Neumann value problem for linear parabolic equations

In the rectangular domain D = {(t, x) : 0 ≤ t ≤ T, 0 ≤ x ≤ 1}, consider the
initial-Neumann value problem for parabolic equation

ut − uxx + λu = f(t, x), λ ≥ 0, (1)

subject to

u(0, x) = ϕ(x) (2)

and the Neumann boundary conditions

ux(t, 0) = α(t), ux(t, 1) = β(t), (3)

where f ∈ L2(D), ϕ ∈ L2(0, 1), α ∈ L2(0, T ) and β ∈ L2(0, T ).

2.1. Existence. To find the solution of problem (1)-(3), integrating both sides
of Eq. (1) with respect to x from 0 to 1, we obtain∫ 1

0

ut(t, x)dx−
∫ 1

0

uxxdx+ λ

∫ 1

0

u(t, x)dx =

∫ 1

0

f(t, x)dx. (4)

Since ∫ 1

0

uxx(t, x)dx = ux(t, 1)− ux(t, 0). (5)

Substituting (5) into (4) we obtain∫ 1

0

ut(t, x)dx+ λ

∫ 1

0

u(t, x)dx = ux(t, 1)− ux(t, 0) +

∫ 1

0

f(t, x)dx. (6)

Introducing a new function v(t) such that

v(t) =

∫ 1

0

u(t, x)dx, where v(0) =

∫ 1

0

ϕ(x)dx. (7)
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This transformation will carry out Eq. (6) to

dv

dt
+ λv =

∫ 1

0

f(t, x)dx+ β(t)− α(t). (8)

Thus problem (1)-(3) can be reduced to an ordinary linear differential equation
satisfied by the new dependent variable v, and its solution can be found as

v(t) =

∫
eλtp(t)dt+ C

eλt
, (9)

where p(t) =
∫ 1

0
f(t, x)dx+β(t)−α(t) and C is a constant of integration, which

can be found by using the initial condition v(0) =
∫ 1

0
u(0, x)dx =

∫ 1

0
φ(x)dx.

Once Eq. (8) is solved, go back to the original dependent variable u(t, x) via the
Eq. (7).
We now can seek the solution u(t, x) as u(t, x) =

∑∞
n=0 an(x)t

n and v(t) be
equated to an infinite series of polynomials of the form v(t) =

∑∞
n=0 bnt

n.
The substitution yields ∫ 1

0

∞∑
n=0

an(x)t
ndx =

∞∑
n=0

bnt
n. (10)

Equating coefficients of like powers of t, we derive the recursion formula for the
coefficients an(x) ∫ 1

0

an(x)dx = bn, n ≥ 0. (11)

This equation has the solution

an(x) =

 bn
Θ(x)
K , if K ̸= 0,

bn (1 + CΘ(x)) , if K = 0,

(12)

where K =
∫ 1

0
Θ(x)dx and Θ(x) is an arbitrary function.

In view of the boundary conditions (3), we get a′n(0) = αn and a′n(1) = βn, n ≥
0, where αn and βn are the coefficients of the power series α(t) =

∑∞
n=0 αnt

n

and β(t) =
∑∞

n=0 βnt
n, respectively.

The final solution is now given by

Theorem 2.1. There exists a solution u(t, x) of problem (1)-(3), which has the
form of a sum as

u(t, x) =
∞∑

n=0

an(x)t
n

such that the coefficients an are given by (12) and satisfy

a′n(0) = αn, a
′
n(1) = βn, n ≥ 0,

where α(t) =
∑∞

n=0 αnt
n and β(t) =

∑∞
n=0 βnt

n.
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2.2. Uniqueness. Here, we establish the uniqueness of the solution of problem
(1)-(3).

Theorem 2.2. There exists at most one solution to problem (1)-(3) in E1,
where E1 is a Hilbert space

E1 = {u : u, ut, ux ∈ L2(D
τ ), u, ux ∈ L2(0, 1)}

with respect to the norm

∥u∥E1 = sup
0≤τ≤T

∫
Dτ

u2t (t, x)dtdx+ sup
0≤τ≤T

∫ 1

0

[
u2 + u2x

]
(τ, x)dx,

where Dτ = (0, τ)× (0, 1),

Proof. Let u1(t, x) and u2(t, x) be two different solutions of problem (1)-(3).
Then u(t, x) = u1(t, x) − u2(t, x) is a nontrivial solution to the homogeneous
problem

ut − uxx + λu = 0, (13)

u(0, x) = 0 (14)

and

ux(t, 0) = 0, ux(t, 1) = 0. (15)

Multiplying both sides of Eq. (13) by ut, employing integration by parts over
Dτ , and taking into account the initial-Neumann conditions (14) and (15), we
obtain ∫

Dτ

u2t (t, x)dtdx+
1

2

∫ 1

0

u2x(τ, x)dx+
λ

2

∫ 1

0

u2(τ, x)dx = 0. (16)

Now, taking the upper bound with respect to τ in the interval (0, T ), we obtain

∥u∥E1 = 0. (17)

Thus, u(t, x) = 0 in E1. Hence u1(t, x) = u2(t, x). �

Example 1. Consider the initial-boundary value problem
ut − uxx = x,

u(0, x) = 0,

ux(t, 0) = t, ux(t, 1) = t.

(18)

A simple computation yields v(t) = t
2 . Thus

b0 = 0, b1 =
1

2
, bn = 0, n ≥ 2,

a0(x) = 0, an(x) = 0, n ≥ 2

and

a1(x) =

 b1
Θ(x)

K
, if K ̸= 0,

b1 (1 + CΘ(x)) , if K = 0.
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If we choose Θ(x) = 2x− 1, then a1(x) =
1
2 [1 +C(2x− 1)], and C can be easily

determined by using the boundary condition a′1(0) = α1 = 1 or a′1(1) = β1 = 1,
hence C = 1. Then the solution is given by

u(t, x) =
∞∑

n=0

an(x)t
n = tx.

Example 2. Consider the Neumann heat conduction problem
ut − uxx = 0,

u(0, x) = ex,

ux(t, 0) = et, ux(t, 1) = et+1.

(19)

Following the analysis introduced before leads to

v(t) = ket, k = e− 1, bn =
k

n!
, n ≥ 0

and

an(x) =

 bn
Θ(x)

K
, if K ̸= 0,

bn (1 + CΘ(x)) , if K = 0,

where

a′n(0) =
1

n!
, a′n(1) =

e

n!
, n ≥ 0.

If we choose Θ(x) = ex, then an(x) =
ex

n! . Thus the solution is given by

u(t, x) =

∞∑
n=0

an(x)t
n =

∞∑
n=0

ex

n!
tn = ex+t.

3. Initial-Neumann value problems for linear hyperbolic equations

The same analysis can also be applied to the initial- Neumann boundary value
problem for linear hyperbolic equations

utt − uxx + λu = g(t, x), (20)

u(0, x) = ϕ(x), ut(0, x) = ψ(x) (21)

ux(t, 0) = α(t), ux(t, 1) = β(t), (22)

where g ∈ L2(D), ϕ ∈ L2(0, 1) and ψ ∈ L2(0, 1).

3.1. Existence. Proceeding as before, we obtain a linear equation satisfied by
the new dependent variable w

d2w

dt2
+ λw =

∫ 1

0

g(t, x)dx+ β(t)− α(t), (23)

where w(t) =
∫ 1

0
u(t, x)dx.

If λ < 0, then the general solution is given by

w(t) = C1e
√
−λt + C2e

−
√
−λ + wp(t), (24)
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where wp(t) is a particular solution of Eq. (23).
If λ > 0, then the general solution is given by

w(t) = C1 cos
√
λt+ C2 sin

√
−λt+ wp(t). (25)

If λ = 0, then the general solution is given by

w(t) =

∫ ∫
p(t)dtdt, p(t) =

∫ 1

0

f(t, x)dx+ β(t)− α(t). (26)

To find the constants Ci, i = 1, 2, we use the initial conditions w(0) =
∫ 1

0
u(0, x)dx

=
∫ 1

0
ϕ(x)dx and w′(0) =

∫ 1

0
ut(0, x)dx =

∫ 1

0
ψ(x)dx. Once Eq. (23) is solved,

go back to the original dependent variable u(t, x) via the equation w(t) =∫ 1

0
u(t, x)dx, and assuming that u(t, x) =

∑∞
n=0 an(x)t

n and w(t) be equated

to an infinite series of polynomials of the form w(t) =
∑∞

n=0 cnt
n. Thus we have

Theorem 3.1. There exists a solution u(t, x) =
∑∞

n=0 an(x)t
n, of problem (20)-

(22), where the coefficients are given by

an(x) =

 cn
Θ(x)

K
, if K ̸= 0,

cn (1 + CΘ(x)) , if K = 0
(27)

such that

a′n(0) = αn, a
′
n(1) = βn, n ≥ 0.

3.2. Uniqueness.

Theorem 3.2. There exists at most one solution to problem (20)-(22) in E2,
where E2 is a Hilbert space

E2 = {u : u, ut, ux ∈ L2(0, 1)}

with respect to the norm

∥u∥E2 = sup
0≤τ≤T

∫ 1

0

[
u2 + u2x + u2t

]
(τ, x)dtdx.

Proof. Let u1(t, x) and u2(t, x) be two different solutions of problem (20)-(22).
Then u(t, x) = u1(t, x) − u2(t, x) is a nontrivial solution to the homogeneous
problem

utt − uxx + λu = 0, (28)

u(0, x) = 0, (29)

ux(t, 0) = 0, ux(t, 1) = 0. (30)

Multiplying both sides of Eq. (28) by ut, employing integration by parts over
Dτ , and taking into account the initial-Neumann conditions (29)-(30), we obtain

λ

2

∫ 1

0

u2(τ, x)dx+

∫ 1

0

u2x(τ, x)dx+
1

2

∫ 1

0

u2t (τ, x)dx = 0. (31)



Series solutions to initial-Neumann boundary value problems 93

Proceeding as before, we obtain

∥u∥E2
= 0. (32)

Thus, u(t, x) = 0 in E2. So that u1(t, x) = u2(t, x). �
Example 3. Let 

ut − uxx = 0,

u(0, x) = 0,

ut(0, x) = ex,

ux(t, 0) = sin t, ux(t, 1) = e sin t,

(33)

where the exact solution to this problem is given by u(t, x) = ex sin t. A simple

computation yields w(t) = (1−e) sin tet+C1t+C2. Using w(0) =
∫ 1

0
u(0, x)dx =

0 and w′(0) =
∫ 1

0
ut(0, x)dx = e− 1, thus

w(t) = k sin t =
(−1)nkt(2n+1)

(2n+ 1)!
, n ≥ 0, k = 1− e,

c2n+1 =
(−1)nk

(2n+ 1)!
, c2n = 0, a2n = 0, n ≥ 0

and

a2n+1(x) =

 cn
Θ(x)

K
, if K ̸= 0,

cn (1 + CΘ(x)) , if K = 0,

where

a′
2n(0) = 0, a′

2n+1(0) =
(−1)n

(2n+ 1)!
, n ≥ 0, a′

2n(1) = 0, a′
2n+1(1) =

(−1)ne

(2n+ 1)!
, n ≥ 0.

If we choose Θ(x) = ex, then a2n+1(x) =
(−1)nex

(2n+1)! , and the solution is given by

u(t, x) =
∞∑

n=0

an(x)t
n =

∞∑
n=0

(−1)nex

(2n+ 1)!
t2n+1 = ex sin t.

4. Initial-Neumann value problems for parabolic-hyperbolic
equations

Consider the Neumann boundary value problem for linear parabolic- hyper-
bolic equation(

∂

∂t
− ∂2

∂x2

)(
∂2u

∂t2
− ∂2u

∂x2

)
= h(t, x), 0 < x < 1, 0 < t ≤ T, (34)

u(0, x) = ϕ(x), ut(0, x) = ψ(x), utt(0, x) = ω(x), (35)

ux(t, 0) = α1(t), ux(t, 1) = β1(t), (36)

uxxx(t, 0) = α2(t), uxxx(t, 1) = β2(t), (37)

where g ∈ L2(D), ϕ ∈ L2(0, 1), ψ ∈ L2(0, 1), ω ∈ L2(0, 1), αi ∈ L2(0, T ) and
βi ∈ L2(0, T ), i = 1, 2.
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This type of problem has been considered in [7], where the author has proved
the existence and uniqueness of the generalized solutions, using energy inequality
and the density of the range of the operator generated by the problem.

4.1. Existence. Proceeding as before, integrating both sides of Eq. (34) with
respect to x from 0 to 1, we obtain∫ 1

0

∂3u

∂t3
(t, x)dx =

∫ 1

0
h(t, x)dx+

[
β′
1(t)− α′

1(t)
]
+

[
β′′
1 (t)− α′′

1 (t)
]
− [β2(t)− α2(t)] . (38)

Introducing a new function χ(t)

χ(t) =

∫ 1

0

u(t, x)dx, (39)

where

χ(0) =

∫ 1

0

ϕ(x)dx, χ′(0) =

∫ 1

0

ψ(x)dx and χ′′(0) =

∫ 1

0

ω(x)dx. (40)

This transformation will carry out Eq. (39) to

d3χ

dt3
= H(t), (41)

where

H(t) =

∫ 1

0

h(t, x)dx+ [β′
1(t)− α′

1(t)] + [β′′
1 (t)− α′′

1(t)]− [β2(t)− α2(t)] .

Thus problem (34)-(37) can be reduced to the ordinary linear differential equa-
tions (41) satisfied by the new variable χ and its solution can be found as

χ(t) =

∫ t

0

∫ t

0

∫ t

0

H(t)dtdtdt+
t2

2

∫ 1

0

ω(x)dx+ t

∫ 1

0

ψ(x)dx+

∫ 1

0

ϕ(x)dx. (42)

Once Eq. (41) is solved, go back to the original dependent variable u(t, x)
via the Eq. (39). Proceeding as before, we can seek the solution u(t, x) as
u(t, x) =

∑∞
n=0 an(x)t

n and χ(t) be equated to an infinite series of polynomials
χ(t) =

∑∞
n=0 dnt

n. The substitution yields∫ 1

0

an(x)dx = dn, n ≥ 0. (43)

Thus, we have

Theorem 4.1. There exists a solution u(t, x) of problem (34)-(37), which has
the form of a sum as u(t, x) =

∑∞
n=0 an(x)t

n, where the coefficients are given by

an(x) =

 dn
Θ(x)

K
, if K ̸= 0,

dn (1 + CΘ(x)) , if K = 0
(44)

such that

a′n(0) = α1,n, a
′
n(1) = β1,n, n ≥ 0 and a′′′n (0) = α2,n, a

′′′
n (1) = β2,n, n ≥ 0.
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4.2. Uniqueness. In proving the uniqueness result we shall make use of

Lemma 4.2. For v, vt ∈ L2(D
τ ), we have∫ 1

0

v2(τ, x)dx ≤ k

(∫
Dτ

(vt)
2(τ, x)dtdx+

∫
Dτ

v2(τ, x)dtdx+

∫ 1

0

v2(0, x)dx

)
,

(45)
where k > 0.

Proof. We have ∫ τ

0

∂

∂t
(v2)dt = 2

∫ τ

0

vtvdt. (46)

Thus

v2(τ, x) = 2

∫ τ

0

vtvdt+ v2(0, x). (47)

So that ∫ 1

0

v2(τ, x)dx = 2

∫
Dτ

vtvdt+

∫ 1

0

v2(0, x)dx. (48)

Applying the ϵ1− inequality, we obtain∫ 1

0

v2(τ, x)dx ≤ 1

ϵ1

∫
Dτ

(vt)
2dtdx+ ϵ1

∫
Dτ

v2dtdx+

∫ 1

0

v2(0, x)dx, ϵ1 > 0, (49)

or ∫ 1

0

v2(τ, x)dx ≤ k

(∫
Dτ

(vt)
2dtdx+

∫
Dτ

v2dtdx+

∫ 1

0

v2(0, x)dx

)
, (50)

where k = max( 1
ϵ1
, ϵ1, 1). �

Theorem 4.3. There exists at most one solution to problem (34)-(37) in E2.

Proof. The uniqueness of the solution to this problem can be proved via a sub-
stitution. Indeed, consider the new function v(t, x) defined by

v(t, x) =
∂2u

∂t2
− ∂2u

∂x2
, 0 < x < 1, 0 < t ≤ T. (51)

Then problem (34)-(37) becomes

∂v

∂t
− ∂2v

∂x2
= h(t, x), 0 < x < 1, 0 < t ≤ T, (52)

v(0, x) = ω(x)− ϕ′′(x), (53)

vx(t, 0) = α′′
1(t)− α2(t), vx(t, 1) = β′′

1 (t)− β2(t). (54)

For simplicity reasons, we will assume that the Neumann conditions (36)-(37)
are homogeneous, that is, ux(t, 0) = ux(t, 1) = 0 and uxxx(t, 0) = uxxx(t, 1) = 0.
So that vx(t, 0) = vx(t, 1) = 0.
Multiplying both sides of Eq. (52) by vt, employing integration by parts over
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Dτ , and taking into account the initial-Neumann conditions (53) and vx(t, 0) =
vx(t, 1) = 0, we obtain∫

Dτ

(vt)
2(t, x)dtdx+

1

2

∫ 1

0

(vx)
2(τ, x)dx =

∫
Dτ

h(t, x)vtdtdx+
1

2

∫ 1

0

v′2(0, x)dx. (55)

Applying the ϵ− inequality to the second right side of (55), we obtain

2

∫
Dτ

(vt)
2(t, x)dtdx+

∫ 1

0

(vx)
2(τ, x)dx

≤ϵ2
∫
Dτ

h2dtdx+
1

ϵ2

∫
Dτ

(vt)
2dtdx+

∫ 1

0

v′2(0, x)dx,

(56)

where ϵ2 > 0. Consequently,

(2−
1

ϵ2
)

∫
Dτ

(vt)
2(t, x)dtdx+

∫ 1

0
(vx)

2(τ, x)dx ≤ ϵ2

∫
Dτ

h2dtdx+

∫ 1

0
v′2(0, x)dx. (57)

If we sum side to side (45) and (57) we obtain∫ 1

0
v2(τ, x)dx+ (2−

1

ϵ2
− k)

∫
Dτ

(vt)
2(t, x)dtdx+

∫ 1

0
(vx)

2(τ, x)dx+ ϵ2

∫
Dτ

h2dtdx

≤k

(∫
Dτ

v2(τ, x)dtdx+

∫ 1

0
v2(0, x)dx

)
+

∫ 1

0
v′2(0, x)dx.

(58)

We now apply the Gronwall’s inequality to (58) and taking the upper bound
with respect to τ in the interval (0, T ), we obtain

∥v∥E1 ≤ c1
(
∥h∥L2(D) + ∥ξ∥L2[0,1] + ∥ξ′∥L2[0,1]

)
, (59)

where c1 =
min(1,2− 1

ϵ2
−k)

max(1,ϵ2,k)
and ξ(x) = ω(x)− ϕ′′(x).

We now go back to the initial-Neumann problem (51), where u(0, x) = ϕ,
ut(0, x) = ψ and ux(t, 0) = ux(t, 1) = 0.
Proceeding as before, we obtain

∥u∥E2 ≤ c2
(
∥v∥L2(D) + ∥ϕ∥L2[0,1] + ∥ϕ′∥L2[0,1] + ∥ψ∥L2[0,1]

)
, c2 > 0. (60)

This means that u is a unique solution to the given problem. This completes
the proof. �

Example 4. Consider the initial-boundary value problem

(
∂

∂t
− ∂2

∂x2

)(
∂2u

∂t2
− ∂2u

∂x2

)
= 0,

u(0, x) = −x4, ut(0, x) = 0, utt(0, x) = 0,

ux(t, 0) = 0, ux(t, 1) = −4,

uxxx(t, 0) = 0, uxxx(t, 1) = −24.

(61)

We have to mention that we can change the inhomogeneous Neumann conditions
to homogeneous conditions by using the transformation formula

w(t, x) = u(t, x) + x4.



Series solutions to initial-Neumann boundary value problems 97

A simple computation yields H(t) = −24 and χ(t) = 4t3 − 1
5 . Thus

d0 = −1

5
, d1 = d2 = 0, d3 = 4, dn = 0, n ≥ 4,

a1(x) = a2(x) = 0, an(x) = 0, n ≥ 4,

a0(x) =

 d0
Θ1(x)

K
, if K ̸= 0,

d0 (1 + C1Θ1(x)) , if K = 0
and a3(x) =

 d3
Θ2(x)

K
, if K ̸= 0,

d3 (1 + C2Θ2(x)) , if K = 0

where Θi(x), i = 1, 2 are arbitrary functions.
The solution is then given by

u(t, x) =
∞∑

n=0

an(x)t
n = a0(x) + a3(x)t

3.

Using the boundary condition u(0, x) = −x4 we find a0(x) = −x4. In view of
a′3(0) = a′3(1) = 0 and a′′′3 (0) = a′′′3 (1) = 0, we can choose Θ2(x) = 1, thus
a3(x) = d3 = 4. Therefore, the solution is given by

u(t, x) = a0(x) + a3(x)t
3 = −x4 + 4t3,

which is the exact solution to this particular problem.
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