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ISOPERIMETRIC INEQUALITY IN α-PLANE

MIN SEONG KIM, IL SEOG KO AND BYUNG HAK KIM∗

Abstract. Taxicab plane geometry and Cinese-Checker plane geometry
are non-Euclidean and more practical notion than Euclidean geometry in
the real world. The α-distance is a generalization of the Taxicab distance
and Chinese-Checker distance. It was first introduced by Songlin Tian in

2005, and generalized to n-dimensional space by Ozcan Gelisgen in 2006.
In this paper, we studied the isoperimetric inequality in α-plane.
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1. Introduction

The distance between two points in the Euclidean geometry is defined as the
length of the segment between two points. Although it is the most popular
distance function, it is not practical when we measure the distance which we
actually move in the real world. To compensate this defect, the taxicab dis-
tance and Chinese-Checker distance were introduced. Taxicab distance [4] and
Chinese-Checker distance [3] are the distance function similar to moving with a
car or Chinese chess in the real world. As a generalization of these two distance
functions, α-distance in the plane was introduced in 2005 by Songlin Tian [7]. In
2006, O.Gelisgen and R.Kaya [2] studied α-distance in an n-dimensional space.
There are not so many results for the geometry with α-distance function in the
contrary many papers for the taxicab geometry.

Isoperimetric inequality is a fundamental and important geometric concept. It
is well known that equality holds if and only if the curve is a circle in Euclidean
geometry, and equality holds if and only if the curve is a square in Taxicab
geometry [5]. However, there is no research in the plane with α-distance funcion.
Regarding this meaningful topic, we verified that an octagon holds equality of
isoperimetric inequality in the plane with α-distance function.
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2. α-distance function in the plane

Let A(x1, y1) and B(x2, y2)be two points in R2. Denote
△AB =max{|x1 − x2|, |y1 − y2|} and δAB =min{|x1 − x2|, |y1 − y2|}.

Let dE(A,B), dT (A,B), dC(A,B) and dα(A,B) be the Euclidean distance func-
tion, Taxicab distance function, Chinese-Checker distance function and α-distance
function between two points A and B respectively. Then they are respectively
given by [1, 3, 4, 6]

dE(A,B) =
√
△2

AB + δ2AB ,
dT (A,B) = △AB + δAB ,

dC(A,B) = △AB + (
√
2− 1)δAB ,

dα(A,B) = △AB + (secα− tanα)δAB (α ∈ [0, π
4 ]).

It follows that if δAB ̸= 0, then
dT (A,B) ≥ dα(A,B) ≥ dC(A,B) > dE(A,B).

Because there has been a lot of discussions about isoperimetric inequality in
the Taxicab geometry [5], we only explored the isoperimetric inequality in the
plane with α− distance function when α ∈ (0, π

4 ]. Through this paper, α-plane
means that the plane with α−distance function.

3. The shortest route between two points on α-plane

For the isoperimetric inequality in α-distance, we consider the shortest route
between two points A(0, 0) and B(x, y) (x, y ≥ 0, x ≥ y) on α-plane.

Furthermore, we study the locus of the shortest route between A and B.
Before the proof of theorems, we prepared some definitions.

Definition 3.1. The length of a curve or segment in α-plane is called α-length

Definition 3.2. The difference between two x-coordinates of the end points of
the segments is called horizontal length

Definition 3.3. The difference between two y-coordinates of the end points of
the segments is called vertical length.

Theorem 3.4. The shortest route between A and B can be written as monotone
and continuous function.

Proof. Assume that the shortest route between A and B which cannot be written
as monotone function exists.

Split the curve into n(n → ∞) pieces by defining points A0, A1, A2, · · · , An−1,
An(A0 = A,An = B) on the curve whose x-coordinates are 0, x1, x2, · · · , xn−1, x
and y-coordinates are 0, y1, y2, · · · , yn−1, y. Then, there exist i, j such that xi >
xj or yi > yj(i > j). Let xi be bigger than xj . The curve and a line x = xj have
at least one more intersection point except Aj . Let an intersection point be X.



Isoperimetric inequality in α-plane 81

Let α-length of the curve between X and Aj be dα. Then

dα ≥ dα(X,Ai) + dα(Ai, Aj)

> dE(X,Ai) + dE(Ai, Aj)

> dE(X,Aj) = dα(X,Aj).

Another curve shorter than the curve exists, which is contradict to the as-
sumption. Hence, the shortest route between A and B can be written as mono-
tone and continuous function. �

Theorem 3.5. The curve between A and B is the shortest route if and only if
slope of the tangent segment on arbitrary point on the curve is from 0 to 1.

Proof. Split the curve into n(n → ∞) pieces by defining points A0, A1, A2, · · ·
, An−1, An(A0 = A,An = B) on the curve whose x-coordinates are 0, x1, x2, · · · ,
xn−1, x and y-coordinates are 0, y1, y2, · · · , yn−1, y. Then, the slope of the tan-
gent segment at arbitrary point on the curve is equal to the slope of AiAi+1

which contains the point. Hence it is sufficient to prove that curve between A
and B is the shortest route if and only if the slope of arbitrary AiAi+1 is from
0 to 1 for the proof of this theorem. Let us calculate the α-length of the curve
which is monotone and the shortest route between A and B.

Because the curve is monotone, the slope of arbitrary AiAi+1 is bigger than
or equal to 0. Classify AA1, A1A2, · · · , An−1B into two sets, which one is the
set whose elements′ slopes are smaller than or equal to 1, and the other is the
set whose slopes are bigger than 1. In this chapter, the former is called set P ,
and the latter is called set Q.

Let hp and hq be the sum of horizontal length of the segments belong to P
and Q respectively.

Let vp and vq be the sum of vertical length of the segments belong to P and
Q respectively.

Then, the sum of α-length of the segments belong to P is hp+vp(secα−tanα),
and the sum of α-length of the segments belong to Q is vq + hq(secα−tanα).
Therefore, the α-length of the curve between A and B is (hp + vq) + (hq +
vp)(secα−tanα) and the α-length of the shortest route between A and B is
(hp + hq) + (vp + vq)(secα−tanα).

Since the curve is the shortest route, we see that

(hp + vq) + (hq + vp)(secα− tanα) = (hp + hq) + (vp + vq)(secα− tanα).

Therefore, (hq − vq)(secα−tanα− 1) is equal to 0. secα−tanα− 1 is equal to
0 if and only if α is 0. Thus, hq is equal to vq. If hq is bigger than 0, hq < vq
is obvious because of the definition of set Q. It is contradiction to hq is equal
to vq. Hence, hq is equal to 0. Then, vq is equal to 0, too. Therefore, Q is
an empty set. That is, there is no segment whose slope is bigger than 1 among
AA1, A1A2, · · · , An−1B. Thus, Curve between A and B is the shortest route if
and only if the slope of arbitrary AiAi+1 is from 0 to 1.
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Curve between A and B is the shortest route if and only if slope of the tangent
segment on arbitrary point on the curve is from 0 to 1. �

Due to Theorems 3.4 and 3.5, locus of the shortest route between A and B is
parallelogram.

Figure 1. Locus of the shortest route between A and B

Locus of the shortest route between A and B is parallelogram whose internal
angles are π

4 ,
3π
4 , π

4 and 3π
4 .

4. Isoperimetric inequality in α-plane

In this chapter, we study the shape of closed curve which holds equality
of isoperimetric inequality in α-plane. Before the proof of the isoperimetric
inequality in α-plane, we introduce the definition of oval.

Definition 4.1. For every pair of points on the simple closed curve, if every
point on the straight line segment that joins them is within the region, then the
curve is called oval, and the curve which is not oval is called non-oval.

Since the isoperimetric inequality does not hold for a non-oval curve in α-
plane, it is sufficient to only consider about the oval.

Draw the tangent line l and m whose slopes are 0 and 1 on the leftside and
topside of an arbitrary oval curve C. Let the points of contact be A and H .

Figure 2. An oval curve C.

Let us think about the route to increase its area while the perimeter is constant
by changing the curve between the points A and H. Exploring the characteristic
of the curve between the point A and H is necessary.
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Theorem 4.2. The curve between the point A and H is the shortest route
between the two points.

Proof. Split the curve between H and A into n(n → ∞) pieces by defining points
A0, A1, A2, · · · , An−1, An (A0 = H,An = A) on the curve whose x-coordinates
are x0, x1, x2, · · · , xn−1, x and y-coordinates are 0, y1, y2, · · · , yn−1, y. Then, Ai

(i = 1, 2, · · · , n− 1) is under l and m , and above AH.
Let the coordinates of the points H and A be (0, 0) and (x, y). If x is bigger

than y, then A is above the line m. It is a contradiction to A is under the line
m. Thus, x is bigger than or equal to y.

If the slope of HA1 is bigger than 1, then it is contradict to A1 is under m.
If the slope of HA1 is less than 0, then it is contradict to A1 is above AH.

Hence, the slope of HA1 is from 0 to 1. Let us prove that if the slope of
Ai−1Ai(i = 1, 2, · · · , k) is from 0 to 1, then the slope of AkAk+1 is also from 0
to 1.

If the slope of AkAk+1 is bigger than 1, then Ak−1Ak+1 is out of the curve
C. It is contradict to the assumption that the curve C is an oval-curve. If the
slope of AkAk+1 is less than 0, then AkA is out of the curve C. It is contradict
to the assumption that the curve C is an oval-curve. Hence the slope of AkAk+1

is from 0 to 1, so the slope of A0A1, A1A2, A2A3, · · ·An−1A are all from 0 to 1.
Therefore, due to Theorem 3.5., the curve between the point A and H is the

shortest route between the two points. �

Moreover we have

Theorem 4.3. The shape of a curve which holds equality of isoperimetric in-
equality is an octagon whose angles are all 3

4π.

Proof. By the using the locus of the shortest route, the curve between A and
H can be changed like as Figure 3. The thick curve increases the curve’s area
while the perimeter is constant.

Figure 3. Changing the curve between A and H.

By the same way, whole curve can be changed like Figure 4.
That is, about an arbitrary oval-curve, there is an octagon whose angles are

all 3
4π and which has larger area while the perimeter is constant.
Therefore, shape of a curve which holds equality of isoperimetric inequality

is octagon whose angles are all 3
4π. �



84 Min Seong Kim, Il Seog Ko and Byung Hak Kim

Figure 4. The changed curve.

Due to the Theorem 4.3., we only think about the octagon whose angles are
all 3

4π. Let α-length of the sides be y1, x1, y2, x2, y3, x3, y4, and x4, and a be
y1 + y2 + y3 + y4 and b be x1 + x2 + x3 + x4. Let L be the perimeter of the
octagon, S be the area and k = secα−tanα+ 1.

Figure 5. The octagon.

Theorem 4.4. The isoperimetric inequality in α-plane is given by

L2 ≥ 8(−k2 + 4k − 2)S.

Proof. Since the width and the height of an octagon should be constant, we can
obtain the following relations.

y1 + y2
k

+ x1 =
y3 + y4

k
+ x3, (1)

y1 + y4
k

+ x4 =
y2 + y3

k
+ x2. (2)



Isoperimetric inequality in α-plane 85

By (1) and (2), we have

S = (x1 +
y1 + y2

k
)(x4 +

y1 + y4
k

)− y21 + y22 + y23 + y24
2k2

=
(a+ k(x1 + x3))(a+ k(x2 + x4))

4k2
− y21 + y22 + y23 + y24

2k2

≤ 1

4k2

(
a+

kb

2

)2

− a2

8k2

=
2− 4k + k2

16k2

[(
a− 2Lk − Lk2

−k2 + 4k − 2

)2

+
L2k2

2− 4k + k2
−
(

2Lk − Lk2

2− 4k + k2

)2
]
.

Since k ∈ [
√
2, 2), it is obvious that 2− 4k + k2 < 0 and 2Lk − Lk2 > 0.

If we apply the result above to the inequality for S, then we can see that S
is convex- up and the x-coordinate of the vertex is bigger than or equal to 0.

Therefore, S has its maximum at a = 2Lk−Lk2

−k2+4k−2 . In this case, we get

S ≤ 2− 4k + k2

16k2

(
L2k2

2− 4k + k2
−
(

2Lk − Lk2

2− 4k + k2

)2
)

=
L2

8(−k2 + 4k − 2)
.

The equality holds if and only if the following three relations hold

x1 + x3 = x2 + x4 =
b

2
,

y1 = y2 = y3 = y4 =
a

4
,

a =
2Lk − Lk2

−k2 + 4k − 2
.

By (1), (2) and upper results, we can see that x1, x2, x3 and x4 are all equal to
b
4 ,

a
4 = 2Lk−Lk2

4(−k2+4k−2) , and
b
4 = 2Lk−2L

4(−k2+4k−2) . Hence, the equality holds if and only

if x1, x2, x3 and x4 are all 2Lk−2L
4(−k2+4k−2) , and y1, y2, y3 and y4 are all 2Lk−Lk2

4(−k2+4k−2) .

Hence the proof of the theorem is completed. �
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