DOI QR코드

DOI QR Code

Phylogenetics and Gene Structure Dynamics of Polygalacturonase Genes in Aspergillus and Neurospora crassa

  • Hong, Jin-Sung (Department of Horticultural, Biotechnology and Landscape Architecture, Seoul Women's University) ;
  • Ryu, Ki-Hyun (Department of Horticultural, Biotechnology and Landscape Architecture, Seoul Women's University) ;
  • Kwon, Soon-Jae (US Department of Agriculture-Agricultural Research Service, Western Regional Plant Introduction Station, 59 Johnson Hall, Washington State University) ;
  • Kim, Jin-Won (Department of Environment Horticulture, University of Seoul) ;
  • Kim, Kwang-Soo (Bioenergy Crop Research Center, National Institute of Crop Science, Rural Development Administration) ;
  • Park, Kyong-Cheul (Institute of Biosciences and Biotechnology, Kangwon National University)
  • Received : 2012.10.28
  • Accepted : 2013.03.20
  • Published : 2013.09.01

Abstract

Polygalacturonase (PG) gene is a typical gene family present in eukaryotes. Forty-nine PGs were mined from the genomes of Neurospora crassa and five Aspergillus species. The PGs were classified into 3 clades such as clade 1 for rhamno-PGs, clade 2 for exo-PGs and clade 3 for exo- and endo-PGs, which were further grouped into 13 sub-clades based on the polypeptide sequence similarity. In gene structure analysis, a total of 124 introns were present in 44 genes and five genes lacked introns to give an average of 2.5 introns per gene. Intron phase distribution was 64.5% for phase 0, 21.8% for phase 1, and 13.7% for phase 2, respectively. The introns varied in their sequences and their lengths ranged from 20 bp to 424 bp with an average of 65.9 bp, which is approximately half the size of introns in other fungal genes. There were 29 homologous intron blocks and 26 of those were sub-clade specific. Intron losses were counted in 18 introns in which no obvious phase preference for intron loss was observed. Eighteen introns were placed at novel positions, which is considerably higher than those of plant PGs. In an evolutionary sense both intron loss and gain must have taken place for shaping the current PGs in these fungi. Together with the small intron size, low conservation of homologous intron blocks and higher number of novel introns, PGs of fungal species seem to have recently undergone highly dynamic evolution.

Keywords

References

  1. Abe, K., Gomi, K., Hasegawa, F. and Machida, M. 2006. Impact of Aspergillus oryzae genomics on industrial production of metabolites. Mycopathologia 162:143-153. https://doi.org/10.1007/s11046-006-0049-2
  2. Achaz, G., Netter, P. and Coissac, E. 2001. Study of intrachromosomal duplications among the eukaryote genomes. Mol. Biol. Evol. 18:2280-2288. https://doi.org/10.1093/oxfordjournals.molbev.a003774
  3. Allen, R. L. and Lonsdale, D. M. 1992. Sequence analysis of three members of the maize polygalacturonase gene family expressed during pollen development. Plant Mol. Biol. 20:343-345. https://doi.org/10.1007/BF00014505
  4. Bon, E., Casaregola, S., Blandin, G., Llorente, B., Neuveglise, C., Munsterkotter, M., Guldener, U., Mewes, H. W., Van Helden, J. and Dujon, B. 2003. Molecular evolution of eukaryotic genomes: hemiascomycetous yeast spliceosomal introns. Nucleic. Acids Res. 31:1121-1135. https://doi.org/10.1093/nar/gkg213
  5. Castillo-Davis, C. I., Mekhedov, S. L., Hartl, D. L., Koonin, E. V. and Kondrashov, F. A. 2002. Selection for short introns in highly expressed genes. Nat. Genet. 31:415-418. https://doi.org/10.1038/ng940
  6. Chapman, B. A., Bowers, J. E., Schulze, S. R. and Paterson, A. H. 2004. A comparative phylogenetic approach for dating whole genome duplication events. Vol. 20, pp. 180-185, Oxford Univ. Press. UK.
  7. Coppin, E., Debuchy, R., Arnaise, S. and Picard, M. 1997. Mating types and sexual development in filamentous ascomycetes. Micro. Mol. Biol. Rev. 61:411-428.
  8. Deng, J., Carbone, I. and Dean, R. A. 2007. The evolutionary history of cytochrome P450 genes in four filamentous Ascomycetes. BMC Evol. Biol. 7:30. https://doi.org/10.1186/1471-2148-7-30
  9. Denning, D. W. 1998. Invasive aspergillosis. Clin. Infect. Dis. 26: 781-803. https://doi.org/10.1086/513943
  10. de Souza, S. J. 2003. The emergence of a synthetic theory of intron evolution. Genetica 118:117-121. https://doi.org/10.1023/A:1024193323397
  11. Doolittle, W. F. 1978. Genes in pieces: were they ever together. Nature 272:581-582. https://doi.org/10.1038/272581a0
  12. Fedorov, A., Merican, A. F. and Gilbert, W. 2002. Large-scale comparison of intron positions among animal, plant, and fungal genes. Proc. Nat. Acad. Sci. USA 99:16128-16133. https://doi.org/10.1073/pnas.242624899
  13. Fedorov, A., Suboch, G., Bujakov, M. and Fedorova, L. 1992. Analysis of nonuniformity in intron phase distribution. Nucleic Acids Res. 20:2553-2557. https://doi.org/10.1093/nar/20.10.2553
  14. Galagan, J. E., Calvo, S. E., Borkovich, K. A., Selker, E. U., Read, N. D., Jaffe, D., et al. 2003. The genome of the filamentous fungus Neurospora crassa. Nature 24:859-868.
  15. Galagan, J. E., Calvo, S. E., Cuomo, C., Ma, L. J., Wortman, J. R., Batzoglou, S., Lee, S. I., Bastuerkmen, M., Spevak, C. C. and Clutterbuck, J. 2005a. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438:1105-1115. https://doi.org/10.1038/nature04341
  16. Galagan, J. E., Henn, M. R., Ma, L. J., Cuomo, C. A. and Birren, B. 2005b. Genomics of the fungal kingdom: Insights into eukaryotic biology. Genome Res. 15:1620-1631. https://doi.org/10.1101/gr.3767105
  17. Gilbert, W. 1978. Why genes in pieces. Nature 271:501. https://doi.org/10.1038/271501a0
  18. Hadfield, K. A. and Bennett, A. B. 1998. Polygalacturonases:many genes in search of a function. Plant Physiol. 117:337-343. https://doi.org/10.1104/pp.117.2.337
  19. Horan, K., Lauricha, J., Bailey-Serres, J., Raikhel, N. and Girke, T. 2005. Focus issue on plant databases genome cluster database. a sequence family analysis platform for arabidopsis and rice. Plant Physiol. 138:47-54. https://doi.org/10.1104/pp.104.059048
  20. Hynes, M. J. 2003. The Neurospora crassa genome opens up the world of filamentous fungi. Genome Biol. 4:217. https://doi.org/10.1186/gb-2003-4-6-217
  21. Jones, M. G. 2007. The first filamentous fungal genome sequences: Aspergillus leads the way for essential everyday resources or dusty museum specimens- Microbiology 153:1. https://doi.org/10.1099/mic.0.2006/001479-0
  22. Kellis, M., Birren, B. W. and Lander, E. S. 2004. Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 428:617-624. https://doi.org/10.1038/nature02424
  23. Kim, J., Shiu, S. H., Thoma, S., Li, W. H. and Patterson, S. E. 2006. Patterns of expansion and expression divergence in the plant polygalacturonase gene family. Genome Biol. 7:R87. https://doi.org/10.1186/gb-2006-7-9-r87
  24. Lees-Miller, J. P., Goodwin, L. O. and Helfman, D. M. 1990. Three novel brain tropomyosin isoforms are expressed from the rat alpha-tropomyosin gene through the use of alternative promoters and alternative RNA processing. Mol. Cell. Biol. 10: 1729-1742. https://doi.org/10.1128/MCB.10.4.1729
  25. Lespinet, O., Wolf, Y. I., Koonin, E. V. and Aravind, L. 2002. The role of lineage-specific gene family expansion in the evolution of eukaryotes. Genome Res. 12:1048. https://doi.org/10.1101/gr.174302
  26. Li, W. H., Gu, Z., Wang, H. and Nekrutenko, A. 2001. Evolutionary analyses of the human genome. Nature 409:847-849. https://doi.org/10.1038/35057039
  27. Long, M., de Souza, S. J., Rosenberg, C. and Gilbert, W. 1998. Relationship between proto-splice sites and intron phase: evidence from dicodon analysis. Proc. Nat. Acad. Sci. USA 95:219-223. https://doi.org/10.1073/pnas.95.1.219
  28. Long, M., Rosenberg, C. and Gilbert, W. 1995. Intron phase correlations and the evolution of the intron/exon structure of genes. Proc. Nat. Acad Sci. USA 92:12495-12499. https://doi.org/10.1073/pnas.92.26.12495
  29. Lynch, M. and Conery, J. S. 2000. The evolutionary fate and consequences of duplicate genes. Science 290:1151-1155. https://doi.org/10.1126/science.290.5494.1151
  30. Lynch, M. and Richardson, A. O. 2002. The evolution of spliceosomal introns. Curr. Opin. Genet. Dev. 12:701-710. https://doi.org/10.1016/S0959-437X(02)00360-X
  31. Machida, M., Asai, K., Sano, M., Tanaka, T., Kumagai, T., Terai, G., Kusumoto, K. I., Arima, T., Akita, O. and Kashiwagi, Y. 2005. Genome sequencing and analysis of Aspergillus oryzae. Nature 438:1157-1161. https://doi.org/10.1038/nature04300
  32. Markovic, O. and Janecek, S. 2001. Pectin degrading glycoside hydrolases of family 28: sequence-structural features, specificities and evolution. Protein Eng. 14:615-631. https://doi.org/10.1093/protein/14.9.615
  33. Martinez, D., Larrondo, L. F., Putnam, N., Gelpke, M. D. S., Huang, K., Chapman, J., Helfenbein, K. G., Ramaiya, P., Detter, J. C. and Larimer, F. 2004. Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP 78. Nat. Biotechnol. 22:695-700. https://doi.org/10.1038/nbt967
  34. Mourier, T. and Jeffares, D. C. 2003. Eukaryotic intron loss. Science 300:1393-1393. https://doi.org/10.1126/science.1080559
  35. Nierman, W. C., Pain, A., Anderson, M. J., Wortman, J. R., Kim, H. S., Arroyo, J., Berriman, M., Abe, K., Archer, D. B. and Bermejo, C. 2005. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438:1151-1156. https://doi.org/10.1038/nature04332
  36. Padovan, A. C. B., Sanson, G. F. O., Brunstein, A. and Briones, M. R. S. 2005. Fungi evolution revisited: application of the penalized likelihood method to a Bayesian fungal phylogeny provides a new perspective on phylogenetic relationships and divergence dates of Ascomycota groups. J. Mol. Evol. 60:726-735. https://doi.org/10.1007/s00239-004-0164-y
  37. Palmer, J. D. and Logsdon, Jr, J. M. 1991. The recent origins of introns. Curr. Opin. Genet. Dev. 1:470-477. https://doi.org/10.1016/S0959-437X(05)80194-7
  38. Park, K. C., Kwon, S. J., Kim, P. H., Bureau, T. and Kim, N. S. 2008. Gene structure dynamics and divergence of the polygalacturonase gene family of plants and fungus. Genome 51:30-40. https://doi.org/10.1139/G07-093
  39. Parsch, J. 2003. Selective constraints on intron evolution in Drosophila. Genetics 165:1843-1851.
  40. Payne, G. A., Nierman, W. C., Wortman, J. R., Pritchard, B. L., Brown, D., Dean, R. A., Bhatnagar, D., Cleveland, T. E., Machida, M. and Yu, J. 2006. Whole genome comparison of Aspergillus flavus and A. oryzae. Med. Mycol. 44:9-11. https://doi.org/10.1080/13693780600835716
  41. Pontecorvo, G., Roper, J. A., Hemmons, L. M., Macdonald, K. D. and Bufton, A. W. 1953. The genetics of Aspergillus nidulans. Adv. Genet. 5:141-238. https://doi.org/10.1016/S0065-2660(08)60408-3
  42. Prince, V. E. and Pickett, F. B. 2002. Splitting pairs: the diverging fates of duplicated genes. Nat. Rev. Genet. 3:827-837. https://doi.org/10.1038/nrg928
  43. Roy, S. W. 2003. Recent evidence for the exon theory of genes. Genetica 118:251-266. https://doi.org/10.1023/A:1024190617462
  44. Roy, S. W. 2004. The origin of recent introns: transposons. Genome Biol. 5:251. https://doi.org/10.1186/gb-2004-5-12-251
  45. Stoltzfus, A., Logsdon, Jr, J. M., Palmer, J. D. and Doolittle, W. F. 1997. Intron "sliding" and the diversity of intron positions. Proc. Nat. Acad. Sci. USA 94:10739. https://doi.org/10.1073/pnas.94.20.10739
  46. Sverdlov, A. V., Csuros, M., Rogozin, I. B. and Koonin, E. V. 2007. A glimpse of a putative pre-intron phase of eukaryotic evolution. Trends Genet. 23:105-108. https://doi.org/10.1016/j.tig.2007.01.001
  47. Timberlake, W. E. and Marshall, M. A. 1989. Genetic engineering of filamentous fungi. Science 244:1313-1317. https://doi.org/10.1126/science.2525275
  48. Torki, M., Mandaron, P., Mache, R. and Falconet, D. 2000. Characterization of a ubiquitous expressed gene family encoding polygalacturonase in Arabidopsis thaliana. Gene 242:427-436. https://doi.org/10.1016/S0378-1119(99)00497-7
  49. Wolfe, K. H. and Shields, D. C. 1997. Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387:708-713. https://doi.org/10.1038/42711
  50. Wortman, J. R., Fedorova, N., Crabtree, J., Joardar, V., Maiti, R., Haas, B. J., Amedeo, P., Lee, E., Angiuoli, S. V. and Jiang, B. 2006. Whole genome comparison of the A. fumigatus family. Med. Mycol. 44:3-7. https://doi.org/10.1080/13693780600835799
  51. Yokoyama, R. and Nishitani, K. 2004. Genomic basis for cellwall diversity in plants. A comparative approach to gene families in rice and Arabidopsis. Plant Cell Physiol. 45:1111-1121. https://doi.org/10.1093/pcp/pch151
  52. Yu, J., Yang, Z., Kibukawa, M., Paddock, M., Passey, D. A. and Wong, G. K. S. 2002. Minimal introns are not "Junk". Genome Res. 12:1185-1189. https://doi.org/10.1101/gr.224602