DOI QR코드

DOI QR Code

PMMA Coated BaF2:Er3+ Nanoparticles via a Novel One-Step Reverse-Emulsion Polymerization Process

  • Lian, Hongzhou (Department of Physics, CICECO, University of Aveiro) ;
  • Fu, Lianshe (Department of Physics, CICECO, University of Aveiro) ;
  • Andre, Paulo S. (Instituto de Telecommunicacoes and Department of Physics, University of Aveiro) ;
  • Lin, Jun (State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences)
  • Received : 2013.02.19
  • Accepted : 2013.05.22
  • Published : 2013.08.20

Abstract

Poly(methyl methacrylate) coated $BaF_2:Er^{3+}$ nanoparticles were prepared via a novel reverse-emulsion polymerization process using methyl methacrylate as continuous phase and water as dispersed phase. Preparation and coating of $BaF_2:Er^{3+}$ particles were processed in a single step. The resulting polymeric composites show the characteristic $Er^{3+}$ luminescence at excitation of 980 nm and may have potential applications in amplified optical networks.

Keywords

References

  1. Hagenmuller, P. Inorganic Solid Fluorides: Chemistry and Physics; Academic Press: New York, 1985.
  2. Barros, J. R.; Bocker, C.; Russel, C. Solid State Sci. 2010, 12, 2086. https://doi.org/10.1016/j.solidstatesciences.2010.09.003
  3. Kumar, K. U.; Babu, P.; Jang, K. H.; Seo, H. J.; Jayasankar, C. K.; Joshi, A. S. J. Alloys Compds. 2008, 458, 509. https://doi.org/10.1016/j.jallcom.2007.04.035
  4. Wojtowicz, A. J. Opt. Mater. 2009, 31, 1772. https://doi.org/10.1016/j.optmat.2008.12.032
  5. Kumar, G. A.; Riman, R.; Chae, S. C.; Jang, Y. N.; Bae, I. K.; Moon, H. S. J. Appl. Phys. 2004, 95, 3243. https://doi.org/10.1063/1.1649807
  6. Beecroft, L. L.; Ober, C. K. Chem. Mater. 1997, 9, 13027.
  7. Malitson, I. H. J. Opt. Soc. Am. 1964, 54, 628. https://doi.org/10.1364/JOSA.54.000628
  8. Slooff, L. H.; van Blaaderen, A.; Polman, A.; Hebbink, G. A.; Klink, S. I.; Van Veggel, F. C. J. M.; Reinhoudt, D. N.; Hofstraat, J. W. J. Appl. Phys. 2002, 91, 3955. https://doi.org/10.1063/1.1454190
  9. Ruckenstein, E.; Park, J. S. Polymer 1992, 33, 405. https://doi.org/10.1016/0032-3861(92)91001-I
  10. Li, R. K. Y.; Lu, S. N.; Choy, C. L. J. Thermoplast Compos. Mater. 1995, 8, 304. https://doi.org/10.1177/089270579500800306
  11. Lu, S. N.; Yan, L.; Zhu, X. G.; Qi, Z. N. J. Mater. Sci. 1992, 27, 4633. https://doi.org/10.1007/BF01165998
  12. Lian, H. Z.; Ye, Z. R.; Shi, C. S. Nanotechnology 2004, 15, 1455. https://doi.org/10.1088/0957-4484/15/11/013
  13. Lian, H. Z.; Liu, J.; Ye, Z. R.; Shi, C. S. Chem. Phys. Lett. 2004, 386, 291. https://doi.org/10.1016/j.cplett.2004.01.036
  14. Porta, F.; Prati, L.; Rossi, M.; Scari, G. Colloids and Surfaces A: Physicochem. Eng. Aspects 2002, 211, 43. https://doi.org/10.1016/S0927-7757(02)00220-0
  15. Hou, S. Y.; Xing, Y.; Liu, X. C.; Zou, Y. C.; Liu, B.; Sun, X. J. CrystEngComm 2010, 12, 1945. https://doi.org/10.1039/b923936g
  16. Bender, C. M.; Burlitch, J. M. Chem. Mater. 2000, 12, 1969. https://doi.org/10.1021/cm9904741
  17. Tikhomirov, V. K.; Furniss, D.; Seddon, A. B.; Reaney, I. M.; Beggiora, M.; Ferrari, M.; Montagna, M.; Rolli, R. Appl. Phys. Lett. 2002, 81, 1937. https://doi.org/10.1063/1.1497196
  18. Chen, D. H.; Wu, S. H. Chem. Mater. 2000, 12, 1354. https://doi.org/10.1021/cm991167y
  19. Liu, F.; Ma, E.; Chen, D. Q.; Wang, Y. S.; Yu, Y. L.; Huang, P. J. Alloys Compds. 2009, 467, 317. https://doi.org/10.1016/j.jallcom.2007.11.109
  20. Lian, H. Z.; Liu, J.; Ye, Z. R.; Shi, C. S. J. Nanosci. Nanotechnol. 2008, 8, 1380.
  21. Macfarlane, R. M.; Shelby, R. M. Opt. Commun. 1983, 45, 46. https://doi.org/10.1016/0030-4018(83)90407-8