DOI QR코드

DOI QR Code

Cloning, Over-expression, and Characterization of YjgA, a Novel ppGpp-binding Protein

  • Gnanasekaran, Gopalsamy (Department of Molecular Medicine, Clinical Vaccine R&D Center, Chonnam National University) ;
  • Pan, SangO (Jeollanamdo Institute of Natural Resources Research (JINR)) ;
  • Jung, Wontae (Department of Chemistry, Chonnam National University) ;
  • Jeong, Kwangjoon (Department of Molecular Medicine, Clinical Vaccine R&D Center, Chonnam National University) ;
  • Jeong, Jae-Ho (Department of Microbiology, Chonnam National University Medical School) ;
  • Rhee, Joon Haeng (Department of Molecular Medicine, Clinical Vaccine R&D Center, Chonnam National University) ;
  • Choy, Hyon E. (Department of Microbiology, Chonnam National University Medical School) ;
  • Jung, Che-Hun (Department of Molecular Medicine, Clinical Vaccine R&D Center, Chonnam National University)
  • Received : 2013.05.03
  • Accepted : 2013.05.20
  • Published : 2013.08.20

Abstract

Guanosine-5'-diphosphate 3'-diphosphate (ppGpp) serves as alarmone in bacterial stringent responses. In this study, an affinity column was constructed by immobilizing ppGpp to NHS-Sepharose for isolating ppGpp-binding proteins. A novel ppGpp-binding protein, YjgA, was isolated and characterized by MALDI-TOF MS (matrix-assisted laser desorption ionization-time-of-flight mass spectrometry) coupled with two-dimensional gel electrophoresis. YjgA and truncated forms of YjgA were cloned and over-expressed in BL21 (DE3). The binding affinity of YjgA to ppGpp was determined by equilibrium dialysis. The interaction of YjgA with ppGpp was very specific, considering that the dissociation constant of YjgA with ppGpp was measured as $5.2{\pm}2.0{\mu}M$, while the affinities to GTP and GDP were about 60 and 30 times weaker than ppGpp. Expression of yjgA gene in Escherichia coli K-12 MG1655 was examined by reverse transcription polymerase chain reaction (RT-PCR). RT-PCR results revealed that yjgA was expressed from early to late stationary phase. The yjgA deletion mutant exhibited decreased cell number at stationary phase compared to parent strain and the over-expression of YjgA increased the cell number. These results suggested that YjgA might stimulate cell division under stationary phase. In most prokaryotic genome, about half of the protein candidates are hypothetical, that are expected to be expressed but there is no experimental report on their functions. The approach utilized in this study may serve as an effective mean to probe the functions of hypothetical proteins.

Keywords

References

  1. Ausubel, F. M.; Brent, R.; Kingston, R. E.; Moore, D. D.; Seidman, J. G.; Smith, J. A.; Struhl, K. Current Protocols in Molecular Biology; Chanda, V. B., Ed.; John Wiley and Sons Inc.: Boston, MA, 1998.
  2. Bhatia, U.; Robison, K.; Gilbert, W. Science 1997, 276, 1724-1725. https://doi.org/10.1126/science.276.5319.1724
  3. Bougdour, A.; Gottesman, S. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 12896-12901. https://doi.org/10.1073/pnas.0705561104
  4. Cashel, M.; Gallant, J. Nature 1969, 221, 838-841. https://doi.org/10.1038/221838a0
  5. Cashel, M.; Gentry, D. R.; Hernandez, V. J.; Vinella, D. In Escherichia coli and Salmonella: Cellular and Molecular Biology; Neidhardt, F. C., Ingraham, J. C., Brooks Low, K., Magasanik, B., Schaechter, M., Umbarger, H. E., Eds.; American Society for Microbiology Press: Washington, DC., 1996; pp 1458-1496.
  6. Chang, D. E.; Smalley, D. J.; Conway, T. Molecular Microbiology 2002, 45(2), 289-306. https://doi.org/10.1046/j.1365-2958.2002.03001.x
  7. Choi, J. W.; Lee, J.; Nishi, K.; Kim, Y. S.; Jung, C. H.; Kim, J. S. J. Mol. Biol. 2008, 377, 258-267. https://doi.org/10.1016/j.jmb.2008.01.004
  8. Datsenko, K. A.; Wanner, B. L. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 6640-6645. https://doi.org/10.1073/pnas.120163297
  9. Ferullo, D. J.; Lovett, S. T. PLoS Genetics 2008, 4, e1000300. https://doi.org/10.1371/journal.pgen.1000300
  10. Flardh, K.; Axberg, T.; Albertson, N. H.; Kjelleberg, S. J. Bacteriol. 1994, 176, 5949-5957.
  11. Gatewood, M. L.; Jones, G. H. J. Bacteriol. 2010, 192, 4275-4280. https://doi.org/10.1128/JB.00367-10
  12. Gentry, D. R.; Hernadez, V. J.; Nguyen, L. H.; Jensen, D. B.; Cashel, M. J. Bacteriol. 1993, 175, 7982-7989.
  13. Haseltine, W.; Block, R. Proc. Natl. Acad. Sci. U. S. A. 1973, 70, 1564-1568. https://doi.org/10.1073/pnas.70.5.1564
  14. Janssen, G. M. C.; Maassen, J. A.; Moller, W. In Ribosomes and Protein Synthesis: A Practical Approach; Spedding, G., ed.; IRL Press: Oxford, UK, 1990; pp 51-68.
  15. Jensen, O. N.; Podtelejnikov, A. V.; Mann, M. Anal. Chem. 1997, 69, 4741-4750. https://doi.org/10.1021/ac970896z
  16. Jiang, M.; Datta, K.; Walker, A.; Strahler, J.; Bagamasbad, P.; Andrews, P. C.; Maddock, J. R. J. Bacteriol. 2006, 188, 6757- 6770. https://doi.org/10.1128/JB.00444-06
  17. Kanjee, U.; Gutsche, I.; Ale xopoulos, E.; Zhao, B.; El Bakkouri, M.; Thibault, G.; Liu, K.; Ramachandran, S.; Snider, J.; Pai, E. F.; Houry, W. A. EMBO J. 2011, 30, 931-944. https://doi.org/10.1038/emboj.2011.5
  18. Karin, L.; Dave, W. U.; Trudy, M. W. Microbiology 2010, 156, 603-608. https://doi.org/10.1099/mic.0.038257-0
  19. Koonin, E. V.; Galperin, M. Y. Sequence-Evolution-Function: Computational approaches in comparative genomics; Kluwer Academic, Boston, MA, 2003.
  20. Krohn, M.; Wagner, R. Anal. Biochem. 1995, 225, 188-190. https://doi.org/10.1006/abio.1995.1138
  21. Lange, R.; Fischer, D.; Hengge-Aronis, R. J. Bacteriol. 1995, 177, 4676-4680.
  22. Maciag, M.; Kochanowska, M.; Lyzen, R.; Wegrzyn, G.; Szalewska- Palasz, A. Plasmid 1995, 63, 61-67.
  23. Mitkevich, V. A.; Ermakov, A.; Kulikova, A. A.; Tankov, S.; Shyp, V.; Soosaar, A.; Tenson, T.; Makarov, A. A.; Ehrenberg, M.; Hauryliuk, V. J. Mol. Biol. 2010, 402, 838-846. https://doi.org/10.1016/j.jmb.2010.08.016
  24. O'Farrell, P. H. J. Biol. Chem. 1975, 250, 4007-4021.
  25. Park, H. M.; Park, J. H.; Choi, J. W.; Lee, J.; Kim, B. Y.; Jung, C. H.; Kim, J. S. Acta Crystallogr. D. Biol. Crystallogr. 2012, 68, 920-926. https://doi.org/10.1107/S0907444912017210
  26. Park, S. Y.; Lee, S. H.; Lee, J.; Nishi, K.; Kim, Y. S.; Jung, C. H.; Kim, J. S. J. Mol. Biol. 2008, 376, 1426-1437. https://doi.org/10.1016/j.jmb.2007.12.062
  27. Potrykus, K.; Cashel, M. Ann. Rev. Microbiol. 2008, 62, 35-51. https://doi.org/10.1146/annurev.micro.62.081307.162903
  28. Potrykus, K.; Murphy, H.; Philippe, N.; Cashel, M. Environ. Microbiol. 2011, 13, 563-575. https://doi.org/10.1111/j.1462-2920.2010.02357.x
  29. Ryals, J.; Little, R.; Bremer, H. J. Bacteriol. 1982, 151, 1261-1268.
  30. Silberbach, M.; Huser, A.; Kalinowski, J.; Puhler, A.; Walter, B.; Kramer, R.; Burkovski, A. J. Biotechnol. 2005, 119, 357-367. https://doi.org/10.1016/j.jbiotec.2005.04.007
  31. Song, M.; Kim, H. J.; Kim, E. Y.; Shin, M.; Lee, H. C.; Hong, Y.; Rhee, J. H.; Yoon, H.; Ryu, S.; Lim, S.; Choy, H. E. J. Biol. Chem. 2004, 279, 34183-34190. https://doi.org/10.1074/jbc.M313491200
  32. Spedding G. Ribosomes and Protein Synthesis: A Practical Approach; Oxford: IRL Press; 1990.
  33. Toulokhonov, I. I.; Shulgina, I.; Hernandez, V. J. J. Biol. Chem. 2001, 276, 1220-1225. https://doi.org/10.1074/jbc.M007184200
  34. Vogel, H. J.; Bonner, D. M. J. Biol. Chem. 1956, 218, 97-106.
  35. Vrentas, C. E.; Gaal, T.; Berkmen, M. B.; Rutherford, S. T.; Haugen, S. P.; Vassylyev, D. G.; Ross, W.; Gourse, R. L. J. Mol. Biol. 2008, 377, 551-564. https://doi.org/10.1016/j.jmb.2008.01.042
  36. Washburn, M. P.; Wolters, D.; Yates, J. R., 3rd. Nat. Biotechnol. 2001, 19, 242-247. https://doi.org/10.1038/85686

Cited by

  1. A Rapid Screening of Ligand Binding by Measuring Intrinsic Fluorescence Changes of Proteins vol.38, pp.9, 2017, https://doi.org/10.1002/bkcs.11211
  2. The Activation of Glycerol Dehydrogenase fromESCHERICHIA COLIby ppGpp vol.41, pp.2, 2020, https://doi.org/10.1002/bkcs.11932
  3. Binding of Glutathione and PPGPP to Stringent Starvation Protein A ( SSPA ) vol.41, pp.9, 2013, https://doi.org/10.1002/bkcs.12089