DOI QR코드

DOI QR Code

1D Proton NMR Spectroscopic Determination of Ethanol and Ethyl Glucuronide in Human Urine

  • Kim, Siwon (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Lee, Minji (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Yoon, Dahye (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Lee, Dong-Kye (Department of Forensic Chemistry, National Forensic Service Southern District Office) ;
  • Choi, Hye-Jin (Department of Forensic Chemistry, National Forensic Service Southern District Office) ;
  • Kim, Suhkmann (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University)
  • Received : 2013.03.08
  • Accepted : 2013.05.20
  • Published : 2013.08.20

Abstract

Forensic and legal medicine require reliable data to indicate excessive alcohol consumption. Ethanol is oxidatively metabolized to acetate by alcohol dehydrogenase and non-oxidatively metabolized to ethyl glucuronide (EtG), ethyl sulfate (EtS), phosphatidylethanol, or fatty acid ethyl esters (FAEE). Oxidative metabolism is too rapid to provide biomarkers for the detection of ethanol ingestion. However, the non-oxidative metabolite EtG is a useful biomarker because it is stable, non-volatile, water soluble, highly sensitive, and is detected in body fluid, hair, and tissues. EtG analysis methods such as mass spectroscopy, chromatography, or enzyme-linked immunosorbent assay techniques are currently in use. We suggest that nuclear magnetic resonance (NMR) spectroscopy could be used to monitor ethanol intake. As with current conventional methods, NMR spectroscopy doesn't require complicated pretreatments or sample separation. This method has the advantages of short acquisition time, simple sample preparation, reproducibility, and accuracy. In addition, all proton-containing compounds can be detected. In this study, we performed $^1H$ NMR analyses of urine to monitor the ethanol and EtG. Urinary samples were collected over time from 5 male volunteers. We confirmed that ethanol and EtG signals could be detected with NMR spectroscopy. Ethanol signals increased immediately upon alcohol intake, but decreased sharply over time. In contrast, EtG signal increased and reached a maximum about 9 h later, after which the EtG signal decreased gradually and remained detectable after 20-25 h. Based on these results, we suggest that $^1H$ NMR spectroscopy may be used to identify ethanol non-oxidative metabolites without the need for sample pretreatment.

Keywords

References

  1. Borucki, K.; Schreiner, R.; Dierkes, J.; Jachau, K.; Krause, K.; Westphal, S.; Wurst, F.; Luley, C.; Schmidt-Gayk, H. Alcoholism: Clinical and Experimetal Research 2005, 29, 781-787. https://doi.org/10.1097/01.ALC.0000164372.67018.EA
  2. Best, C.; Laposata, M. Frontiers in Bioscience 2003, 8, e202-217. https://doi.org/10.2741/931
  3. Pawan, G. Proceedings of Nutrition Society 1972, 31, 83-89. https://doi.org/10.1079/PNS19720020
  4. Peterson, K. Alcohol Research & Health 2004, 28, 30-37.
  5. Schloegl, H.; Dresen, S.; Spaczynski, K.; Stoertzel, M.; Wurst, F.; Weinmann, W. International Journal of Legal Medicine 2006, 120, 83-88. https://doi.org/10.1007/s00414-005-0012-7
  6. Kharbouche, H.; Sporkert, F.; Staub, C.; Mangin, P.; Augsburger, M. Praxis 2009, 98, 1299-1306. https://doi.org/10.1024/1661-8157.98.22.1299
  7. Morini, L.; Politi, L.; Polettini, A. Addiction 2009, 104, 915-920. https://doi.org/10.1111/j.1360-0443.2009.02535.x
  8. Morini, L.; Politi, L.; Groppi, A.; Stramesi, C.; Polettini, A. Journal Mass Spectrometry 2006, 41, 34-42. https://doi.org/10.1002/jms.943
  9. Wurst, F.; Schuttler, R.; Kempter, C.; Seidl, S.; Gilg, T.; Jachau, K.; Alt, A. Alcohol and Alcoholism 1999, 34, 262-263. https://doi.org/10.1093/alcalc/34.2.262
  10. Alt, A.; Janda, I.; Seidl, S.; Wurst, F. Alcohol and Alcoholism 2000, 35, 313-314. https://doi.org/10.1093/alcalc/35.3.313
  11. Nicholas, P.; Kim, D.; Crews, F.; Macdonald, J. Chemical Research Toxicology 2008, 21, 408-420. https://doi.org/10.1021/tx700324t
  12. Wurst, F.; Kempter, C.; Seidl, S.; Alt, A. Alcohol and Alcoholism 1999, 34, 71-77. https://doi.org/10.1093/alcalc/34.1.71
  13. Nishikawa, M.; Tsuchihashi, H.; Miki, A.; Katagi, M.; Schmitt, G.; Zimmer, H.; Keller, T.; Aderjan, R. Journal of Chromatography B: Biomedical Sciences and Applications 1999, 726, 105-110. https://doi.org/10.1016/S0378-4347(99)00008-0
  14. Teague, C.; Holmes, E.; Maibaum, E.; Nicholson, J.; Tang, H.; Chan, Q.; Elliott, P.; Stamler, J.; Ueshima, H.; Zhou, B.; Wilson, I. Analyst 2004, 129, 259-264. https://doi.org/10.1039/b314316n
  15. Nicholas, P.; Kim, D.; Crews, F.; Macdonald, J. Analytical Biochemistry 2006, 358, 185-191. https://doi.org/10.1016/j.ab.2006.08.033
  16. Baranowski, S.; Serr, A.; Thierauf, A.; Weinmann, W.; Grosse Perdekamp, M.; Wurst, F.; Halter, C. International Journal of Legal Medicine 2008, 122, 389-393. https://doi.org/10.1007/s00414-008-0229-3
  17. Holmes, E.; Foxall, P.; Spraul, M.; Farrant, R.; Nicholson, J.; Lindon, J. Journal Pharmaceutical and Biomedical Analysis 1997, 15, 1647-1659. https://doi.org/10.1016/S0731-7085(97)00066-6
  18. Zuppi, C.; Messana, I.; Forni, F.; Rossi, C.; Pennacchietti, L.; Ferrari, F.; Giardina, B. Clinica Chimica Acta 1997, 265, 85-97. https://doi.org/10.1016/S0009-8981(97)00110-1
  19. Lenz, E. M.; Bright, J.; Wilson, I. D.; Morgan, S. R.; Nash, A. F. P. Journal of Pharmaceutical and Biomedical Analysis 2003, 33, 1103-1115. https://doi.org/10.1016/S0731-7085(03)00410-2
  20. Weinmann, W.; Schaefer, P.; Thierauf, A.; Schreiber, A.; Wurst, F. Journal of the American Society for Mass Spectrometry 2004, 15, 188-193. https://doi.org/10.1016/j.jasms.2003.10.010
  21. Halter, C.; Dresen, S.; Auwaerter, V.; Wurst, F.; Weinmann, W. International Journal of Legal Medicine 2008, 122, 123-128. https://doi.org/10.1007/s00414-007-0180-8
  22. Böttcher, M.; Beck, O.; Helander, A. Alcohol and Alcoholism 2008, 43, 46-48.

Cited by

  1. Meeting report: The biology of genomes and proteomes vol.37, pp.7, 2015, https://doi.org/10.1007/s13258-015-0305-2
  2. Automated Analysis of Large-Scale NMR Data Generates Metabolomic Signatures and Links Them to Candidate Metabolites vol.18, pp.9, 2013, https://doi.org/10.1021/acs.jproteome.9b00295