DOI QR코드

DOI QR Code

Frontier Orbitals of Fifteen C20H17(OH)3 Regioisomers: Hybrid DFT B3LYP Study

  • Lee, Seol (Department of Chemistry, and Nanoscale Sciences and Technology Institute, Wonkwang University) ;
  • Lee, Ji Young (Department of Chemistry, and Nanoscale Sciences and Technology Institute, Wonkwang University) ;
  • Lee, Kee Hag (Department of Chemistry, and Nanoscale Sciences and Technology Institute, Wonkwang University)
  • Received : 2012.11.29
  • Accepted : 2013.05.20
  • Published : 2013.08.20

Abstract

The hybrid density-functional (B3LYP/6-31G(d,p)) method was used to analyze the substitution effect on the $C_{20}H_{20}$ cage based on calculation of the frontier orbitals of fifteen $C_{20}H_{17}(OH)_3$ derivatives. All substitution products were geometrically optimized without constraints and confirmed by frequency analysis. The results suggest that the cis-1 cis-1 cis-2 regioisomer is the most stable isomer, which implies that hydrogen bonding exerts a stronger effect on the relative energies of the trihydroxide than long-range interactions. Thus, this supports the experimental result in which the bisvicinal tetrol was of particular preparative-synthetic interest. While the LUMO of each of the $C_{20}H_{17}(OH)_3$ regioisomers was equivalently delocalized over the void within the cage, the HOMO was limitedly delocalized on substituents and carbons in close proximity to the substituents. The characteristics of the HOMO of each of the regioisomers vary based on the substitution sites. This indicates that the 15 regioisomers of each $C_{20}H_{20}$ trisubstituted derivative might undergo an entirely different set of characteristic chemical reactions with electrophilic reagents. The results further suggest that the penta-substituted OH groups on the surface of the fullerene cage are more likely to be localized on a pentagon than to be homogeneously delocalized.

Keywords

References

  1. Kroto, H. W. Nature 1987, 329, 529. https://doi.org/10.1038/329529a0
  2. Schmalz, T. Z.; Seitz, W. A.; Klein, D. J.; Hite, D. G. J. Am. Chem. Soc. 1998, 110, 1113.
  3. Prinzbach, H.; Weiler, A.; Landenberger, P.; Wahl, F.; Wrth, J.; Scott, L. T.; Gelmont, M.; Olevano, D.; Issendorff, B. von. Nature 2000, 407, 60. https://doi.org/10.1038/35024037
  4. Hirsch, A. The Chemistry of Fullerenes; New York: Thieme, 1994.
  5. Bouwer, R. K. M.; Hummelen, J. C. Chem. Eur. J. 2010, 16, 11250. https://doi.org/10.1002/chem.201000537
  6. Scheumann, K.; Sackers, E.; Bertau, M.; Leonhardt, J.; Hunkler, D.; Fritz, H.; Wrth, J.; Prinzbach, H. J. Chem. Soc., Perkin Trans. 1998, 2, 1195.
  7. Wahl, F.; Weiler, A.; Landenberer, P.; Sackers, E.; Voss, T.; Hass, A.; Lieb, M.; Hunkler, D.; Wrth, J.; Knothe, L.; Prinzbach, H. Chem. Eur. J. 2006, 12, 6255. https://doi.org/10.1002/chem.200501618
  8. Okamoto, Y. Chem. Phys. Lett. 2003, 368, 224. https://doi.org/10.1016/S0009-2614(02)01797-9
  9. Zdetsis, A. D. J. Phys. Chem. C 2011, 115, 14507. https://doi.org/10.1021/jp2023007
  10. Hwang, Y. G.; Lee, S.; Lee, K. H. Bull. Korean Chem. Soc. 2012, 33, 641. https://doi.org/10.5012/bkcs.2012.33.2.641
  11. Moran, D.; Simmonett, A. C.; Leach III, F. E.; Allen, W. D.; Schleyer, P. V. R.; Schaefer III, H. F. J. Am. Chem. Soc. 2006, 128, 9342. https://doi.org/10.1021/ja0630285
  12. An, Y.-P.; Yang, C.-L.; Wang, M.-S.; Ma, X.-G.; Wang, D.-H. J. Phys. Chem. C 2009, 113, 15756. https://doi.org/10.1021/jp904202c
  13. Irikura, K. K. J. Phys. Chem. A 2008, 112, 983. https://doi.org/10.1021/jp710372p
  14. Zhang, C.-Y.; Wu, H.-S.; Jiao, H. J. Mol. Model 2007, 13, 499. https://doi.org/10.1007/s00894-007-0169-8
  15. Lee, S.; Suh, Y.; Hwang, Y. G.; Lee, K. H. Bull. Korean Chem. Soc. 2011, 32, 3372. https://doi.org/10.5012/bkcs.2011.32.9.3372
  16. Beck, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
  17. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. A 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
  18. Stephen, P. J.; Devlin, F. J.; Chablowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623. https://doi.org/10.1021/j100096a001
  19. Herteing, R. H.; Koch, W. Chem. Phys. Lett. 1997, 268, 345. https://doi.org/10.1016/S0009-2614(97)00207-8
  20. Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257. https://doi.org/10.1063/1.1677527
  21. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich,S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A Gaussian 03 B.04, Gaussian, Inc., Pitttsburgh, PA., 2003.
  22. Clark, T. R.; Koch, R. The Chemist's Electronic Book of Orbitals; Springer-Verlag: Berlin, 1999.
  23. Hudson, B. S.; Allis, D. G.; Parker, S. F.; Ramirez-Cuesta, A. J.; Herman, H.; Prinzbach, H. J. Phys. Chem. A 2005, 109, 3418. https://doi.org/10.1021/jp0503213
  24. Sackers, E.; Owald, T.; Weber, K.; Keller, M.; Hunkler, D.; Wahl, F.; Wrth, J.; Knothe, L.; Prinzbach, H. Chem. Eur. J. 2006, 12, 6242. https://doi.org/10.1002/chem.200501609

Cited by

  1. Fullerene Adducts with Low Anisotropy of Polarizability are More Efficient Electron Acceptors for Organic Solar Cells. The Minimum Anisotropy Hypothesis for Efficient Isomer-Free Fullerene-Adduct Photovoltaics vol.120, pp.43, 2016, https://doi.org/10.1021/acs.jpcc.6b09341