DOI QR코드

DOI QR Code

Immobilization of L-Lysine on Zeolite 4A as an Organic-Inorganic Composite Basic Catalyst for Synthesis of α,β-Unsaturated Carbonyl Compounds under Mild Conditions

  • Zamani, Farzad (Department of Chemistry, Islamic Azad University) ;
  • Rezapour, Mehdi (Department of Chemistry, Islamic Azad University) ;
  • Kianpour, Sahar (Central Laboratory Complex, Sheikh-Bahai Department, Isfahan Science and Technology Town, Isfahan University of Technology)
  • Received : 2013.02.23
  • Accepted : 2013.05.16
  • Published : 2013.08.20

Abstract

Lysine (Lys) immobilized on zeolite 4A was prepared by a simple adsorption method. The physical and chemical properties of Lys/zeolite 4A were investigated by X-ray diffraction (XRD), FT-IR, Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV-vis. The obtained organic-inorganic composite was effectively employed as a heterogeneous basic catalyst for synthesis of ${\alpha},{\beta}$-unsaturated carbonyl compounds. No by-product formation, high yields, short reaction times, mild reaction conditions, operational simplicity with reusability of the catalyst are the salient features of the present catalyst.

Keywords

References

  1. Dalko, P. I.; Moisan, L. Angew. Chem. Int. Ed. 2001, 40, 3726. https://doi.org/10.1002/1521-3773(20011015)40:20<3726::AID-ANIE3726>3.0.CO;2-D
  2. Jarvo, E. R.; Miller, S. J. Tetrahedron 2002, 58, 2481. https://doi.org/10.1016/S0040-4020(02)00122-9
  3. Erkkila, A.; Majander, I.; Pihko, P. M. Chem. Rev. 2007, 107, 5416. https://doi.org/10.1021/cr068388p
  4. Bourke, S. L.; Kohn, J. Adv. Drug Delivery Rev. 2003, 55, 447. https://doi.org/10.1016/S0169-409X(03)00038-3
  5. Sanda, F.; Endo, T. Macromol. Chem. Phys. 1999, 200, 2651. https://doi.org/10.1002/(SICI)1521-3935(19991201)200:12<2651::AID-MACP2651>3.0.CO;2-P
  6. Ma, J. A. Angew. Chem. Int. Ed. 2003, 42, 4290. https://doi.org/10.1002/anie.200301600
  7. Maruoka, K.; Ooi, T. Chem. Rev. 2003, 103, 3013. https://doi.org/10.1021/cr020020e
  8. Plaquevent, J. C.; Levillain, J.; Guillen, F.; Malhiac, C.; Gaumont, A. C. Chem. Rev. 2008, 108, 5035. https://doi.org/10.1021/cr068218c
  9. Ernst, S.; Hartmann, M.; Munsch, S. Stud. Surf. Sci. Catal. 2001, 135, 308.
  10. Palit, D.; Moulik, S. P. J. Colloid Interf. Sci. 2001, 239, 20. https://doi.org/10.1006/jcis.2001.7523
  11. El Shafei, G. M. S.; Moussa, N. A. J. Colloid Interf. Sci. 2001, 238, 160. https://doi.org/10.1006/jcis.2001.7474
  12. El Shafei, G. M. S. J. Colloid Interf. Sci. 2002, 250, 394. https://doi.org/10.1006/jcis.2002.8397
  13. Munsch, S.; Hartmann, M.; Ernst, S. Chem. Commun. 2001, 1978.
  14. Vinu, A.; Hossain, K. Z.; Kumar, G. S.; Ariga, K. Carbon 2006, 44, 530. https://doi.org/10.1016/j.carbon.2005.08.004
  15. Casado, C.; Castan, J.; Gracia, I.; Yus, M.; Mayoral, A.; Sebastián, V.; Lopez-Ram-de-Viu, P.; Uriel, S.; Coronas, J. Langmuir 2012, 28, 6638. https://doi.org/10.1021/la300864n
  16. Krohn, J. E.; Tsapatsis, M. Langmuir 2005, 21, 8743. https://doi.org/10.1021/la0511788
  17. Nakyama, M.; Yano, J.; Nakaoka, K.; Ogura, K. Synth. Met. 2003, 138, 419. https://doi.org/10.1016/S0379-6779(02)00469-1
  18. Barrer, R. M. Zeolites and Clay Minerals as Sorbents and Molecular Sieves; Academic Press: London, UK, 1978.
  19. Vanagida, R. Y.; Amaro, A. A.; Seff, K. J. Phys. Chem. 1973, 77, 906. https://doi.org/10.1021/j100626a010
  20. Yang, H.; Chen, H.; Du, H.; Hawkins, R.; Craig, F.; Ring, Z.; Omotoso, O.; Munoz, V.; Mikula, R. Micropor. Mesopor. Mater. 2009, 117, 33. https://doi.org/10.1016/j.micromeso.2008.06.009
  21. Jones, G. Organic Reactions 1967, 15, 204.
  22. Yadav, J. S.; Bhunia, D. C.; Singh, V. K.; Srihari, P. Tetrahedron Lett. 2009, 50, 2470. https://doi.org/10.1016/j.tetlet.2009.03.015
  23. Kantevari, S.; Bantu, R.; Nagarapu, L. J. Mol. Catal. A: Chem. 2007, 269, 53. https://doi.org/10.1016/j.molcata.2006.12.039
  24. Bartoli, G.; Beleggia, R.; Giuli, S.; Giuliani, A.; Marcantoni, E.; Massaccesi, M., Paletti, M. Tetrahedron Lett. 2006, 47, 6501. https://doi.org/10.1016/j.tetlet.2006.07.031
  25. Saravanamurugan, S.; Palanichamy, M.; Hartmann, M.; Murugesan, V. Appl. Catal. A 2006, 298, 8. https://doi.org/10.1016/j.apcata.2005.09.014
  26. Gracia, M. D.; Jurado, M. J.; Luque, R.; Campelo, J. M.; Luna, D.; Marinas, J. M.; Romero, A. A. Micropor. Mesopor. Mater. 2009, 118, 87. https://doi.org/10.1016/j.micromeso.2008.08.018
  27. Ryabukhin, S. V.; Plaskon, A. S.; Volochnyuk, D. M.; Pipko, S. E.; Shivanyuk, A. N.; Tolmachev, A. A. J. Comb. Chem. 2007, 9, 1073. https://doi.org/10.1021/cc070073f
  28. Wang, Y.; Shang, Z. C.; Wu, T. X.; Fan, J. C.; Chen, X. J. Mol. Catal. A: Chem. 2006, 253, 212. https://doi.org/10.1016/j.molcata.2006.03.035
  29. Ranu, B. C.; Jana, R. Eur. J. Org. Chem. 2006, 16, 3767.
  30. Forbes, D. C.; Law, A. M.; Morrison, D. W. Tetrahedron Lett. 2006, 47, 1699. https://doi.org/10.1016/j.tetlet.2006.01.059
  31. Abbaspourrad, A.; Kalbasi, R. J.; Zamani, F. Chin. J. Chem. 2010, 28, 2074. https://doi.org/10.1002/cjoc.201090346
  32. Kolahdoozan, M.; Kalbasi, R. J.; Shahzeidi, Z. S.; Zamani, F. J. Chem. 2013, 2013, doi:10.1155/2013/496837.
  33. Kalbasi, R. J.; Shahzeidi, Z. S.; Zamani, F. Iranian J. Catal. 2011, 1, 55.
  34. Colilla, M.; Balas, F.; Manzano, M.; Vallet-Regi, M. Chem. Mater. 2007, 19, 3099. https://doi.org/10.1021/cm071032p
  35. Ghiaci, M.; Rezaei, B.; Kalbasi, R. J. Talanta 2007, 73, 37. https://doi.org/10.1016/j.talanta.2007.02.026
  36. O'Connor, A.J.; Hokura, A.; Kisler, J. M.; Shimazu, S.; Stevens, G. W.; Komatsu, Y. Sep. Purif. Techn. 2006, 48, 197. https://doi.org/10.1016/j.seppur.2005.07.007
  37. Treacy, M. J.; Higgins, J. B. Collection of Simulated XRD Powder Patterns for Zeolites; Elsevier: Amsterdam, The Netherlands, 2001; p 379.
  38. Gramlich, V.; Meier, W. M. Z. Kristallogr. Kristallgeom. Kristallphys. Kristallchem. 1971, 133, 134. https://doi.org/10.1524/zkri.1971.133.133.134
  39. Stevens, R. W.; Siriwardane, R. V.; Logan, J. Energy Fuels 2008, 22, 3070. https://doi.org/10.1021/ef800209a
  40. Yamada, H.; Yokoyama, S.; Watanabe, Y.; Uno, H.; Tamura, K. Sci. Technol. Adv. Mater. 2005, 6, 394. https://doi.org/10.1016/j.stam.2005.03.011
  41. Huang, Y.; Jiang, Z. Micropor. Mater. 1997, 12, 341. https://doi.org/10.1016/S0927-6513(97)00082-5
  42. Iyer, K. A.; Singer, S. J. J. Phys. Chem. 1994, 98, 12679. https://doi.org/10.1021/j100099a035
  43. Kitadai, N.; Yokoyama, T.; Nakashima, S. J. Colloid Interface Sci. 2009, 329, 31. https://doi.org/10.1016/j.jcis.2008.09.072
  44. Kitadai, N.; Yokoyama, T.; Nakashima, S. J. Colloid Interface Sci. 2009, 338, 395. https://doi.org/10.1016/j.jcis.2009.06.061
  45. Humblot, V.; Methivier, C.; Pradier, C. M. Langmuir 2006, 22, 3089. https://doi.org/10.1021/la0533866
  46. Hartmann, M. Chem. Mater. 2005, 17, 4577. https://doi.org/10.1021/cm0485658
  47. Goyne, K. W.; Zimmerman, A. R.; Newalkar, B. L.; Komarneni, S.; Brantley, S. L.; Chorover, J. J. Porous Mater. 2002, 9, 243. https://doi.org/10.1023/A:1021631827398
  48. Munsch, S. Adsorption of Amino Acids Over Micro and Mesoporous Molecular Sieves; Ph.D. thesis, Kaiserslautern University of Technology, 2003.
  49. Carneiro, C. E. A.; Santana, H. D.; Casado, C.; Coronas, J.; Zaia, D. A. M. Astrobiology 2011, 11, 409. https://doi.org/10.1089/ast.2010.0521
  50. Titus, E.; Kalkar, A. K.; Gaikar, V. G. Colloids Surf. A Physicochem. Eng. Asp. 2003, 223, 55. https://doi.org/10.1016/S0927-7757(03)00131-6
  51. Klotz, I. M. Science 1958, 128, 815. https://doi.org/10.1126/science.128.3328.815
  52. Kauzmann, W. Adv. Protein Chem. 1959, 141, 1.
  53. Tsyganenko, A. A.; Storozheva, E. N.; Manoilova, O. V.; Lesage, T.; Daturi, M.; Lavalley, J. C. Catal. Lett. 2000, 70, 159. https://doi.org/10.1023/A:1018845519727
  54. Hunger, M. Catalysis Reviews: Science and Engineering 1997, 39, 345. https://doi.org/10.1080/01614949708007100
  55. Daniell, W.; Schubert, U.; Glockler, R.; Meyer, A.; Noweck, K.; Knozinger, H. Appl. Catal. A: Gen. 2000, 196, 247. https://doi.org/10.1016/S0926-860X(99)00474-3
  56. Ivanov, Y.; Cheshkov, V.; Natova, M. Polymer Composite Materials: Interface Phenomena and Processes; Kluwer Academic Publishers: Dordrecht, 2001.
  57. Nemethy, G.; Scheraga, H. A. J. Phys. Chem. 1962, 66, 1773. https://doi.org/10.1021/j100816a004
  58. Parbhakar, A.; Cuadros, J.; Sephton, M. A.; Dubbin, W.; Coles, B. J.; Weiss, D. Colloid Surf. A 2007, 307, 142. https://doi.org/10.1016/j.colsurfa.2007.05.022
  59. Wang, Y.; Shang, Z.; Wu, T.; Fan, J.; Chen, X. J. Mol. Catal. A: Chem. 2006, 253, 212. https://doi.org/10.1016/j.molcata.2006.03.035
  60. Zeidan, R. K.; Davis, M. E. J. Catal. 2007, 247, 379. https://doi.org/10.1016/j.jcat.2007.02.005

Cited by

  1. /mercaptopropanoic acid-poly(2-hydroxyethyl acrylate) nanocomposite: Highly active magnetic catalyst for direct hydroxylation of benzene vol.131, pp.12, 2014, https://doi.org/10.1002/app.40383
  2. ChemInform Abstract: Immobilization of L-Lysine on Zeolite 4A as an Organic-Inorganic Composite Basic Catalyst for Synthesis of α,β-Unsaturated Carbonyl Compounds under Mild Conditions. vol.44, pp.50, 2013, https://doi.org/10.1002/chin.201350086
  3. Synthesis and characterization of sulfonated-mercaptopropanoic acid coated Fe3O4 nanoparticles as a novel acid magnetic catalyst for Biginelli reaction vol.26, pp.None, 2013, https://doi.org/10.1016/j.solidstatesciences.2013.10.007
  4. Cr(III)-containing Fe3O4/mercaptopropanoic acid–poly(2-hydroxyethyl acrylate) nanocomposite: a highly active magnetic catalyst in solvent-free aerobic oxidat vol.43, pp.9, 2013, https://doi.org/10.1039/c3dt52729h
  5. PEDOT@4A‐Molecular Sieve Composite Electrode for Supercapacitor vol.216, pp.16, 2019, https://doi.org/10.1002/pssa.201900188
  6. Pulsed laser ablated zeolite nanoparticles: A novel nano‐catalyst for the synthesis of 1,8‐dioxo‐octahydroxanthene and N‐aryl‐1,8‐dioxodecahydroacridine with molecu vol.34, pp.2, 2013, https://doi.org/10.1002/aoc.5250
  7. 키토산/제올라이트 복합체의 이산화탄소 흡착 특성 vol.31, pp.2, 2020, https://doi.org/10.14478/ace.2020.1012
  8. Elimination of amoxicillin using zeolite Y-sea salt as a good catalyst for activation of hydrogen peroxide: Investigating degradation pathway and the effect of wastewater chemistry vol.302, pp.no.pa, 2022, https://doi.org/10.1016/j.jenvman.2021.114045