References
- Dalko, P. I.; Moisan, L. Angew. Chem. Int. Ed. 2001, 40, 3726. https://doi.org/10.1002/1521-3773(20011015)40:20<3726::AID-ANIE3726>3.0.CO;2-D
- Jarvo, E. R.; Miller, S. J. Tetrahedron 2002, 58, 2481. https://doi.org/10.1016/S0040-4020(02)00122-9
- Erkkila, A.; Majander, I.; Pihko, P. M. Chem. Rev. 2007, 107, 5416. https://doi.org/10.1021/cr068388p
- Bourke, S. L.; Kohn, J. Adv. Drug Delivery Rev. 2003, 55, 447. https://doi.org/10.1016/S0169-409X(03)00038-3
- Sanda, F.; Endo, T. Macromol. Chem. Phys. 1999, 200, 2651. https://doi.org/10.1002/(SICI)1521-3935(19991201)200:12<2651::AID-MACP2651>3.0.CO;2-P
- Ma, J. A. Angew. Chem. Int. Ed. 2003, 42, 4290. https://doi.org/10.1002/anie.200301600
- Maruoka, K.; Ooi, T. Chem. Rev. 2003, 103, 3013. https://doi.org/10.1021/cr020020e
- Plaquevent, J. C.; Levillain, J.; Guillen, F.; Malhiac, C.; Gaumont, A. C. Chem. Rev. 2008, 108, 5035. https://doi.org/10.1021/cr068218c
- Ernst, S.; Hartmann, M.; Munsch, S. Stud. Surf. Sci. Catal. 2001, 135, 308.
- Palit, D.; Moulik, S. P. J. Colloid Interf. Sci. 2001, 239, 20. https://doi.org/10.1006/jcis.2001.7523
- El Shafei, G. M. S.; Moussa, N. A. J. Colloid Interf. Sci. 2001, 238, 160. https://doi.org/10.1006/jcis.2001.7474
- El Shafei, G. M. S. J. Colloid Interf. Sci. 2002, 250, 394. https://doi.org/10.1006/jcis.2002.8397
- Munsch, S.; Hartmann, M.; Ernst, S. Chem. Commun. 2001, 1978.
- Vinu, A.; Hossain, K. Z.; Kumar, G. S.; Ariga, K. Carbon 2006, 44, 530. https://doi.org/10.1016/j.carbon.2005.08.004
- Casado, C.; Castan, J.; Gracia, I.; Yus, M.; Mayoral, A.; Sebastián, V.; Lopez-Ram-de-Viu, P.; Uriel, S.; Coronas, J. Langmuir 2012, 28, 6638. https://doi.org/10.1021/la300864n
- Krohn, J. E.; Tsapatsis, M. Langmuir 2005, 21, 8743. https://doi.org/10.1021/la0511788
- Nakyama, M.; Yano, J.; Nakaoka, K.; Ogura, K. Synth. Met. 2003, 138, 419. https://doi.org/10.1016/S0379-6779(02)00469-1
- Barrer, R. M. Zeolites and Clay Minerals as Sorbents and Molecular Sieves; Academic Press: London, UK, 1978.
- Vanagida, R. Y.; Amaro, A. A.; Seff, K. J. Phys. Chem. 1973, 77, 906. https://doi.org/10.1021/j100626a010
- Yang, H.; Chen, H.; Du, H.; Hawkins, R.; Craig, F.; Ring, Z.; Omotoso, O.; Munoz, V.; Mikula, R. Micropor. Mesopor. Mater. 2009, 117, 33. https://doi.org/10.1016/j.micromeso.2008.06.009
- Jones, G. Organic Reactions 1967, 15, 204.
- Yadav, J. S.; Bhunia, D. C.; Singh, V. K.; Srihari, P. Tetrahedron Lett. 2009, 50, 2470. https://doi.org/10.1016/j.tetlet.2009.03.015
- Kantevari, S.; Bantu, R.; Nagarapu, L. J. Mol. Catal. A: Chem. 2007, 269, 53. https://doi.org/10.1016/j.molcata.2006.12.039
- Bartoli, G.; Beleggia, R.; Giuli, S.; Giuliani, A.; Marcantoni, E.; Massaccesi, M., Paletti, M. Tetrahedron Lett. 2006, 47, 6501. https://doi.org/10.1016/j.tetlet.2006.07.031
- Saravanamurugan, S.; Palanichamy, M.; Hartmann, M.; Murugesan, V. Appl. Catal. A 2006, 298, 8. https://doi.org/10.1016/j.apcata.2005.09.014
- Gracia, M. D.; Jurado, M. J.; Luque, R.; Campelo, J. M.; Luna, D.; Marinas, J. M.; Romero, A. A. Micropor. Mesopor. Mater. 2009, 118, 87. https://doi.org/10.1016/j.micromeso.2008.08.018
- Ryabukhin, S. V.; Plaskon, A. S.; Volochnyuk, D. M.; Pipko, S. E.; Shivanyuk, A. N.; Tolmachev, A. A. J. Comb. Chem. 2007, 9, 1073. https://doi.org/10.1021/cc070073f
- Wang, Y.; Shang, Z. C.; Wu, T. X.; Fan, J. C.; Chen, X. J. Mol. Catal. A: Chem. 2006, 253, 212. https://doi.org/10.1016/j.molcata.2006.03.035
- Ranu, B. C.; Jana, R. Eur. J. Org. Chem. 2006, 16, 3767.
- Forbes, D. C.; Law, A. M.; Morrison, D. W. Tetrahedron Lett. 2006, 47, 1699. https://doi.org/10.1016/j.tetlet.2006.01.059
- Abbaspourrad, A.; Kalbasi, R. J.; Zamani, F. Chin. J. Chem. 2010, 28, 2074. https://doi.org/10.1002/cjoc.201090346
- Kolahdoozan, M.; Kalbasi, R. J.; Shahzeidi, Z. S.; Zamani, F. J. Chem. 2013, 2013, doi:10.1155/2013/496837.
- Kalbasi, R. J.; Shahzeidi, Z. S.; Zamani, F. Iranian J. Catal. 2011, 1, 55.
- Colilla, M.; Balas, F.; Manzano, M.; Vallet-Regi, M. Chem. Mater. 2007, 19, 3099. https://doi.org/10.1021/cm071032p
- Ghiaci, M.; Rezaei, B.; Kalbasi, R. J. Talanta 2007, 73, 37. https://doi.org/10.1016/j.talanta.2007.02.026
- O'Connor, A.J.; Hokura, A.; Kisler, J. M.; Shimazu, S.; Stevens, G. W.; Komatsu, Y. Sep. Purif. Techn. 2006, 48, 197. https://doi.org/10.1016/j.seppur.2005.07.007
- Treacy, M. J.; Higgins, J. B. Collection of Simulated XRD Powder Patterns for Zeolites; Elsevier: Amsterdam, The Netherlands, 2001; p 379.
- Gramlich, V.; Meier, W. M. Z. Kristallogr. Kristallgeom. Kristallphys. Kristallchem. 1971, 133, 134. https://doi.org/10.1524/zkri.1971.133.133.134
- Stevens, R. W.; Siriwardane, R. V.; Logan, J. Energy Fuels 2008, 22, 3070. https://doi.org/10.1021/ef800209a
- Yamada, H.; Yokoyama, S.; Watanabe, Y.; Uno, H.; Tamura, K. Sci. Technol. Adv. Mater. 2005, 6, 394. https://doi.org/10.1016/j.stam.2005.03.011
- Huang, Y.; Jiang, Z. Micropor. Mater. 1997, 12, 341. https://doi.org/10.1016/S0927-6513(97)00082-5
- Iyer, K. A.; Singer, S. J. J. Phys. Chem. 1994, 98, 12679. https://doi.org/10.1021/j100099a035
- Kitadai, N.; Yokoyama, T.; Nakashima, S. J. Colloid Interface Sci. 2009, 329, 31. https://doi.org/10.1016/j.jcis.2008.09.072
- Kitadai, N.; Yokoyama, T.; Nakashima, S. J. Colloid Interface Sci. 2009, 338, 395. https://doi.org/10.1016/j.jcis.2009.06.061
- Humblot, V.; Methivier, C.; Pradier, C. M. Langmuir 2006, 22, 3089. https://doi.org/10.1021/la0533866
- Hartmann, M. Chem. Mater. 2005, 17, 4577. https://doi.org/10.1021/cm0485658
- Goyne, K. W.; Zimmerman, A. R.; Newalkar, B. L.; Komarneni, S.; Brantley, S. L.; Chorover, J. J. Porous Mater. 2002, 9, 243. https://doi.org/10.1023/A:1021631827398
- Munsch, S. Adsorption of Amino Acids Over Micro and Mesoporous Molecular Sieves; Ph.D. thesis, Kaiserslautern University of Technology, 2003.
- Carneiro, C. E. A.; Santana, H. D.; Casado, C.; Coronas, J.; Zaia, D. A. M. Astrobiology 2011, 11, 409. https://doi.org/10.1089/ast.2010.0521
- Titus, E.; Kalkar, A. K.; Gaikar, V. G. Colloids Surf. A Physicochem. Eng. Asp. 2003, 223, 55. https://doi.org/10.1016/S0927-7757(03)00131-6
- Klotz, I. M. Science 1958, 128, 815. https://doi.org/10.1126/science.128.3328.815
- Kauzmann, W. Adv. Protein Chem. 1959, 141, 1.
- Tsyganenko, A. A.; Storozheva, E. N.; Manoilova, O. V.; Lesage, T.; Daturi, M.; Lavalley, J. C. Catal. Lett. 2000, 70, 159. https://doi.org/10.1023/A:1018845519727
- Hunger, M. Catalysis Reviews: Science and Engineering 1997, 39, 345. https://doi.org/10.1080/01614949708007100
- Daniell, W.; Schubert, U.; Glockler, R.; Meyer, A.; Noweck, K.; Knozinger, H. Appl. Catal. A: Gen. 2000, 196, 247. https://doi.org/10.1016/S0926-860X(99)00474-3
- Ivanov, Y.; Cheshkov, V.; Natova, M. Polymer Composite Materials: Interface Phenomena and Processes; Kluwer Academic Publishers: Dordrecht, 2001.
- Nemethy, G.; Scheraga, H. A. J. Phys. Chem. 1962, 66, 1773. https://doi.org/10.1021/j100816a004
- Parbhakar, A.; Cuadros, J.; Sephton, M. A.; Dubbin, W.; Coles, B. J.; Weiss, D. Colloid Surf. A 2007, 307, 142. https://doi.org/10.1016/j.colsurfa.2007.05.022
- Wang, Y.; Shang, Z.; Wu, T.; Fan, J.; Chen, X. J. Mol. Catal. A: Chem. 2006, 253, 212. https://doi.org/10.1016/j.molcata.2006.03.035
- Zeidan, R. K.; Davis, M. E. J. Catal. 2007, 247, 379. https://doi.org/10.1016/j.jcat.2007.02.005
Cited by
- /mercaptopropanoic acid-poly(2-hydroxyethyl acrylate) nanocomposite: Highly active magnetic catalyst for direct hydroxylation of benzene vol.131, pp.12, 2014, https://doi.org/10.1002/app.40383
- ChemInform Abstract: Immobilization of L-Lysine on Zeolite 4A as an Organic-Inorganic Composite Basic Catalyst for Synthesis of α,β-Unsaturated Carbonyl Compounds under Mild Conditions. vol.44, pp.50, 2013, https://doi.org/10.1002/chin.201350086
- Synthesis and characterization of sulfonated-mercaptopropanoic acid coated Fe3O4 nanoparticles as a novel acid magnetic catalyst for Biginelli reaction vol.26, pp.None, 2013, https://doi.org/10.1016/j.solidstatesciences.2013.10.007
- Cr(III)-containing Fe3O4/mercaptopropanoic acid–poly(2-hydroxyethyl acrylate) nanocomposite: a highly active magnetic catalyst in solvent-free aerobic oxidat vol.43, pp.9, 2013, https://doi.org/10.1039/c3dt52729h
- PEDOT@4A‐Molecular Sieve Composite Electrode for Supercapacitor vol.216, pp.16, 2019, https://doi.org/10.1002/pssa.201900188
- Pulsed laser ablated zeolite nanoparticles: A novel nano‐catalyst for the synthesis of 1,8‐dioxo‐octahydroxanthene and N‐aryl‐1,8‐dioxodecahydroacridine with molecu vol.34, pp.2, 2013, https://doi.org/10.1002/aoc.5250
- 키토산/제올라이트 복합체의 이산화탄소 흡착 특성 vol.31, pp.2, 2020, https://doi.org/10.14478/ace.2020.1012
- Elimination of amoxicillin using zeolite Y-sea salt as a good catalyst for activation of hydrogen peroxide: Investigating degradation pathway and the effect of wastewater chemistry vol.302, pp.no.pa, 2022, https://doi.org/10.1016/j.jenvman.2021.114045