DOI QR코드

DOI QR Code

Electrochemical Performance of Activated Carbons/Mn3O4-Carbon Blacks for Supercapacitor Electrodes

  • Received : 2013.02.26
  • Accepted : 2013.05.14
  • Published : 2013.08.20

Abstract

In this work, manganese dioxide ($Mn_3O_4$)/carbon black (CB) composites (Mn-CBs) were prepared by an in situ coating method as electrical fillers and the effect of the Mn-CBs on the electrical performance of activated carbon (AC)-based electrodes was investigated. Structural features of Mn-CBs produced via in situ coating using a $KMnO_4$ solution were confirmed by XRD and TEM images. The electrical performances, including cv curves, charge-discharge behaviors, and specific capacitance of the ACs/Mn-CBs, were determined by cyclic voltammograms. It was found that the composites of $Mn_3O_4$ and CBs were successfully formed by in situ coating method. ACs/Mn-CBs showed higher electrical performance than that of AC electrodes fabricated with conventional CBs due to the pesudocapacitance reaction of manganese oxides in the aqueous electrolyte. Consequently, it is anticipated that the incorporation of $Mn_3O_4$ into CBs could facilitate the utilization of CBs as electrical filler, leading to enhanced electrochemical performance of AC electrodes for supercapacitors.

Keywords

References

  1. Winter, M.; Brodd, R. J. Chem. Rev. 2004, 104, 4245. https://doi.org/10.1021/cr020730k
  2. Pandolfo, A. G.; Hollenkamp, A. F. J. Power Sources 2006, 157, 11. https://doi.org/10.1016/j.jpowsour.2006.02.065
  3. Ghaemi, M.; Ataherian, F.; Zolfaghari, A.; Jafari, S. M. Electrochim. Acta 2008, 53, 4607. https://doi.org/10.1016/j.electacta.2007.12.040
  4. Seo, M. K.; Park, S. J. Curr. Appli. Phys. 2010, 10, 241. https://doi.org/10.1016/j.cap.2009.05.031
  5. Wu, N. L.; Wang, S. Y. J. Power Source 2002, 110, 233. https://doi.org/10.1016/S0378-7753(02)00257-4
  6. Hong, J. K.; Lee, J. H.; Oh, S. M. J. Power Sources 2002, 111, 90. https://doi.org/10.1016/S0378-7753(02)00264-1
  7. Kuroda, S.; Tobori, N.; Sakuraba, M.; Sato, Y. J. Power Sources 2003, 119-121, 924. https://doi.org/10.1016/S0378-7753(03)00230-1
  8. Seo, M. K.; Park, S. J. Curr. Appli. Phys. 2010, 10, 391. https://doi.org/10.1016/j.cap.2009.06.032
  9. Shinomiya, T.; Gupta, V.; Miura, N. Electrochim. Acta 2006, 51, 4412. https://doi.org/10.1016/j.electacta.2005.12.025
  10. Nakayama, M.; Kanaya, T.; Inoue, R. Electrochem. Commun. 2007, 9, 1154. https://doi.org/10.1016/j.elecom.2007.01.021
  11. Toupin, M.; Brousee, T.; Bélanger, D. Chem. Mater. 2004, 16, 3184. https://doi.org/10.1021/cm049649j
  12. Xie, X.; Gao, L. Carbon 2007, 45, 2365. https://doi.org/10.1016/j.carbon.2007.07.014
  13. Huang, X.; Pan, C.; Huang, X. Mater. Lett. 2007, 61, 934. https://doi.org/10.1016/j.matlet.2006.06.040
  14. Wang, Y. G.; Li, H. Q.; Xia, Y. Y. Adv. Mater. 2006, 18, 2619. https://doi.org/10.1002/adma.200600445
  15. Wang, H.; Hao, Q.; Yang, X.; Lu, L.; Wang, X. Electrochem. Commun. 2009, 11, 1158. https://doi.org/10.1016/j.elecom.2009.03.036
  16. Yan, J.; Wei, T.; Fan, Z.; Qian, W.; Zhang, M.; Shen, X.; Wei, F. J. Power Sources 2010, 195, 3041. https://doi.org/10.1016/j.jpowsour.2009.11.028

Cited by

  1. @carbon nanostructures for high-performance supercapacitors using structure-guided combustion waves vol.5, pp.26, 2017, https://doi.org/10.1039/C7TA03259E
  2. Electrochemical prospects and potential of hausmannite Mn3O4 nanoparticles synthesized through microplasma discharge for supercapacitor applications vol.45, pp.5, 2013, https://doi.org/10.1002/er.6288