DOI QR코드

DOI QR Code

Relative Reactivity of Various Al-substituted-dialkylalans in Reduction of Carbonyl Compounds: A Theoretical Study on Substituent Effect

  • Received : 2013.04.25
  • Accepted : 2013.05.13
  • Published : 2013.08.20

Abstract

Relative reactivity of various Al-substituted dialkylalans ($AlR_2(X)$) in reduction of acetone has been studied with density functional theory and MP2 method. Formation of the alan dimers and the alan-acetone adduct, and the transition state for the Meerwein-Ponndorf-Verley (MPV) type reduction of the adduct were calculated to figure out the energy profile. Formation of dimeric alans is highly exothermic. Both the relative free energies for acetone-alan adduct formation and the TS barriers for the MPV type reduction with respect to alan dimers and acetone were calculated and they show the same trend. Based on these energetic data, relative reactivity of alans is expected to be; $AlR_2(Cl)$ > $AlR_2(OTf)$ > $AlR_2(O_2CCF_3)$ > $AlR_2(F)$ > $AlR_2(OMs)$ > $AlR_2(OAc)$ > $AlR_2(OMe)$ > $AlR_2(NMe_2)$. The energy profile is relatively well correlated with the experimental order of the reactivity of Al-substituted dialkylalans. It is noted that the substituents of alans have initial effects on the relative free energies for the carbonyl-adduct formation. Therefore, an $AlR_2(X)$ which forms a more stable carbonyl-adduct is more reactive in carbonyl reduction.

Keywords

References

  1. Winterfeldt, E. Synthesis 1975, 617.
  2. Carey, F. A.; Sundberg, R. J. In Advanced Organic Chemistry: Part B, 5th ed.; Plenum: 2007; p 396
  3. Cha, J. S. Org. Process Res. Dev. 2006, 10, 1032. https://doi.org/10.1021/op068002c
  4. Cha, J. S.; Kwon, O. O.; Kwon, S. Y. Bull. Korean Chem. Soc. 2007, 28, 2162. https://doi.org/10.5012/bkcs.2007.28.12.2162
  5. Miller, A. E. G.; Bliss, J. W.; Schwatzman, L. H. J. Org. Chem. 1959, 24, 627. https://doi.org/10.1021/jo01087a013
  6. Ziegler, K.; Schneider, K.; Schneider, J. Justus Liebig's Ann. Chem. 1959, 623, 9. https://doi.org/10.1002/jlac.19596230103
  7. Ziegler, K.; Martin, H.; Krupp, F. Justus Liebig's Ann. Chem. 1960, 629, 14. https://doi.org/10.1002/jlac.19606290103
  8. Meerwein, H.; Schmidt, R. Liebigs Ann. Chem. 1925, 444, 221. https://doi.org/10.1002/jlac.19254440112
  9. Ponndorf, W. Z. Angew. Chem. 1926, 39, 138. https://doi.org/10.1002/ange.19260390504
  10. Verley, M. Bull. Soc. Chim. Fr. 1925, 37, 871-874.
  11. Nguyen, S. T. Tetrahedron: Asymmetry 2005, 16, 3460. https://doi.org/10.1016/j.tetasy.2005.08.058
  12. Cha, J. S.; Kwon, O. O.; Kwon, S. Y. Bull. Korean Chem. Soc. 1995, 16, 1009.
  13. Cha, J. S.; Kwon, O. O.; Kwon, S. Y. Org. Prep. Proced. Int. 1996, 28, 355. https://doi.org/10.1080/00304949609356544
  14. Cha, J. S.; Kwon, S. Y.; Kwon, O. O.; Kim, J. M.; Song, H. Bull. Korean Chem. Soc. 1996, 17, 900.
  15. Cha, J. S.; Yi, J. E. J. Incl. Phenom. Macrocycl. Chem. 2009, 65, 15. https://doi.org/10.1007/s10847-009-9629-3
  16. Cha, J. S.; Noh, M. Bull. Korean Chem. Soc. 2010, 31, 840. https://doi.org/10.5012/bkcs.2010.31.04.840
  17. Cha, J. S. Bull. Korean Chem. Soc. 2011, 32, 219. https://doi.org/10.5012/bkcs.2011.32.1.219
  18. Smith, M. B.; March, J. In March's Advanced Org. Chem., 6th ed.; Wiley: 2007; p 359.
  19. Kow, R.; Nygren, R.; Rathke, M. W. J. Org. Chem. 1977, 42, 826. https://doi.org/10.1021/jo00425a011
  20. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. et al. Gaussian 09, Revision C.01; Gaussian, Inc.: Wallingford, CT, 2010.
  21. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
  22. Becke, A. D. J. Chem. Phys. 1993, 98, 1372-1377. https://doi.org/10.1063/1.464304
  23. Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652. https://doi.org/10.1063/1.464913
  24. Bauschlicher, C. W., Jr.; Partridge, H. J. Chem. Phys. 1995, 103, 1788. https://doi.org/10.1063/1.469752
  25. Scott, A. P.; Radom, L. J. Phys. Chem. 1996, 100, 16502. https://doi.org/10.1021/jp960976r
  26. Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215. https://doi.org/10.1007/s00214-007-0310-x
  27. Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157. https://doi.org/10.1021/ar700111a
  28. Head-Gordon, M.; Head-Gordon, T. Chem. Phys. Lett. 1994, 220, 122. https://doi.org/10.1016/0009-2614(94)00116-2
  29. Barone, V.; Cossi, M. J. Phys. Chem. A 1998, 102, 1995-2001. https://doi.org/10.1021/jp9716997
  30. Florjanczyk, Z.; Bury, W.; Zygadzo-Monikowska, E.; Justyniak, I.; Balawender, R.; Lewinski, J. Inorg. Chem. 2009, 48, 10892. https://doi.org/10.1021/ic9016307

Cited by

  1. MPV-Reduction of C=O bond with Al-substituted-dialkylalan; A Theoretical Study on Relative Reactivity of Various Carbonyl Substrates vol.35, pp.2, 2013, https://doi.org/10.5012/bkcs.2014.35.2.546