DOI QR코드

DOI QR Code

Effects of Ligand-exchanged Cadmium Selenide Nanoparticles on the Performance of P3HT:PCBM:CdSe Ternary System Solar Cells

  • Park, Eung-Kyu (School of Electronic and Electrical Engineering, Sungkyunkwan University) ;
  • Fu, Honghong (School of Mechanical and Power Engineering, East China University of Science and Technology) ;
  • Choi, Mijung (MLB Lab, Korea circuit Co. Ltd.) ;
  • Luan, Weiling (School of Mechanical and Power Engineering, East China University of Science and Technology) ;
  • Kim, Yong-Sang (School of Electronic and Electrical Engineering, Sungkyunkwan University)
  • Received : 2013.04.09
  • Accepted : 2013.05.10
  • Published : 2013.08.20

Abstract

An improved hybrid solar cell was obtained by focusing on the effects of ligand for CdSe nanoparticles, in the active layers. The performance was compared by mixing nanoparticles capped with pyridine or oleic acid for the acceptor material into poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester based active layer. The solar cells with pyridine capped CdSe nanoparticles showed a power conversion efficiency of 2.96% while oleic acid capped CdSe nanoparticles showed 2.85%, under AM 1.5G illumination. Formation of percolation pathways for carrier transport and a reduction in the hopping event resulted in better performance of pyridine capped nanoparticles.

Keywords

References

  1. Kim, K.; Liu, J.; Namboothiry, M. A. G.; Carroll, D. L. Appl. Phys. Lett. 2007, 90, 163511. https://doi.org/10.1063/1.2730756
  2. Yang, X.; Loos, J.; Veenstra, S. C.; Verhees, W. J.; Wienk, M. M.; Kroon, M. J.; Michels, M. A. J.; Janssen, R. A. J. Nono Lett. 2005, 5, 579. https://doi.org/10.1021/nl048120i
  3. Kim, Y.; Choulis, S. A.; Nelson, J.; Cook, S.; Bradley, D. D. C.; Durrant, J. R. Appl. Phys. Lett. 2005, 86, 063502. https://doi.org/10.1063/1.1861123
  4. Baek, W. H.; Yang, H.; Yoon, T. S.; Kang, C. J.; Lee, H. H.; Kim, Y. S. Sol. Energy Mater. Sol. Cells 2009, 90, 1263.
  5. Li, G.; Yao, Y.; Yang, H.; Shirotriya, V.; Yang, G.; Yang, Y. Adv. Funct. Mater. 2007, 17, 1636. https://doi.org/10.1002/adfm.200600624
  6. Coakley, K. M.; McGehee, M. D. Chem. Mater. 2004, 16, 4533. https://doi.org/10.1021/cm049654n
  7. Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Science 2002, 295, 2425. https://doi.org/10.1126/science.1069156
  8. Truong, N. T. N.; Kim, W. K.; Park, C. Sol. Energy Mater. Sol. Cells 2011, 95, 167. https://doi.org/10.1016/j.solmat.2010.05.017
  9. Yang, H.; Luan, W.; Tu, S.; Wang, Z. M. Crystal Growth and Design. 2009, 9, 1569. https://doi.org/10.1021/cg800425f
  10. Fu, H.; Choi, M.; Luan, W.; Kim, Y. S.; Tu, S. T. Solid-State Electronics 2012, 69, 50. https://doi.org/10.1016/j.sse.2011.12.009
  11. Vanlaeke, P.; Swinnen, A.; Haeldermans, I.; Vanhoyland, G.; Aernouts, T.; Cheyns, D.; Deibel, C.; D'Heaen, J.; Heremans, P.; Poortmans, J.; Manca, J. V. Sol. Energy Mater. Sol. Cells 2006, 90, 2150. https://doi.org/10.1016/j.solmat.2006.02.010
  12. Baek, W. H.; Yoon, T. S.; Lee, H. H.; Kim, Y. S. Organic Electronics 2010, 11, 933. https://doi.org/10.1016/j.orgel.2010.02.013
  13. Kalyuzhny, G.; Murray, R. W. J. Phys. Chem. B 2005, 109, 7012. https://doi.org/10.1021/jp045352x
  14. Baek, W. H.; Choi, M.; Yoon, T. S.; Lee, H. H.; Kim, Y. S. Appl. Phys. Lett. 2010, 96, 133506. https://doi.org/10.1063/1.3374406
  15. Bang, J. H.; Kamat, P. V. American Chemical Society 2011, 5, 9421.
  16. Lokteva, I.; Radychev, N.; Witt, F.; Borchert, H.; Parisi, J.; Kolny- Olesiak, J. Phys. Chem. C 2010, 114, 12784. https://doi.org/10.1021/jp103300v
  17. Derbal-Habak, H.; Bergeret, C.; Cousseau, J.; Nunzi, J. M. Sol. Energy Mater. Sol. Cells 2011, 95, S53. https://doi.org/10.1016/j.solmat.2010.12.047
  18. Klimov, V. I. J. Phys. Chem. B 2000, 104, 6112. https://doi.org/10.1021/jp9944132
  19. Radychev, N.; Lokteva, I.; Witt, F.; Kolny-Olesiak, J.; Borchert, H.; Parisi, J. Phys. Chem. C 2011, 115, 14111. https://doi.org/10.1021/jp2040604

Cited by

  1. BM bulk heterojunction solar cells vol.5, pp.3, 2017, https://doi.org/10.1039/C6TC04308A
  2. Investigation Performance and Mechanisms of Inverted Polymer Solar Cells by Pentacene Doped P3HT : PCBM vol.2014, pp.None, 2013, https://doi.org/10.1155/2014/812643