DOI QR코드

DOI QR Code

Carbon Monoxide Sensor Based on a B2HDDT-doped PEDOT:PSS Layer

  • Memarzadeh, R. (Department of Materials Science & Engineering, Shiraz University) ;
  • Noh, Hui-Bog (Department of Chemistry and Institute of BioPhysio Sensor Technology, Pusan National University) ;
  • Javadpour, S. (Department of Materials Science & Engineering, Shiraz University) ;
  • Panahi, F. (Department of Chemistry, College of Sciences, Shiraz University) ;
  • Feizpour, A. (Department of Chemistry and the Photonics Center, Boston University) ;
  • Shim, Yoon-Bo (Department of Chemistry and Institute of BioPhysio Sensor Technology, Pusan National University)
  • Received : 2013.04.24
  • Accepted : 2013.05.07
  • Published : 2013.08.20

Abstract

An efficient carbon monoxide (CO) sensor was developed based on poly(3,4-ethylenedioxy)thiophenepoly(styrenesulfonate) (PEDOT:PSS) modified with a new pyrimidine-fused heterocyclic compound, bis(2-hydroxyphenyl)dihydropyrido[2,3-d:6,5-d]dipyrimidine-tetraone (B2HDDT). B2HDDT remains stable in the polymer matrix through interactions with functional groups of the polymer. It created prominent sites that captured CO gas, and the experimental parameters, including the amount of doped B2HDDT in the PEDOT:PSS film, were optimized. The sensor probe was also examined to verify its reliability for detecting CO in the presence of atmospheric gases in a discriminating manner. NMR, AFM, and FT-IR spectra were obtained to evaluate the structure and morphology of the B2HDDT-doped PEDOT:PSS (PEDOT:PSS/B2HDDT) film. The content of 35 vol % B2HDDT (7.0 mM) in PEDOT:PSS provided the largest response factor (${\Delta}R/R_o$) for the CO gas. The sensor response was reproducible, with a relative standard deviation < 5% (n = 5). The detection limit was determined to be $0.44{\pm}0.05$ vol %.

Keywords

References

  1. Adhikari, B.; Majumdar, S. Prog. Polym. Sci. 2004, 29, 699. https://doi.org/10.1016/j.progpolymsci.2004.03.002
  2. Bai, H.; Shi, G. Sensors 2007, 7, 267. https://doi.org/10.3390/s7030267
  3. Lange, U.; Roznyatovskaya, N. V.; Mirsky, V. M. Anal. Chim. Acta 2008, 614, 1. https://doi.org/10.1016/j.aca.2008.02.068
  4. Rahman, Md. A.; Kumar, P.; Park, D.-S Shim, Y.-B. Sensors 2008, 8, 118. https://doi.org/10.3390/s8010118
  5. Latessa, G.; Brunetti, F.; Reale, A.; Saggio, G.; Carlo, A. D. Sens. Actuators B 2009, 139, 304. https://doi.org/10.1016/j.snb.2009.03.063
  6. Kwon, I. W.; Son, H. J.; Kim, W. Y.; Lee, Y. S.; Lee, H. C. Synth. Met. 2009, 159, 1174. https://doi.org/10.1016/j.synthmet.2009.02.006
  7. Groenendaal, L.; Jonas, F.; Freitag, D.; Pielartzik, H.; Reynolds, J. R. Adv. Matter. 2000, 2, 481.
  8. Ouyang, J.; Xu, Q.; Chu, C.-W.; Yang, Y.; Li, G.; Shinar, J. Polymer 2004, 45, 8443. https://doi.org/10.1016/j.polymer.2004.10.001
  9. Wang, T.; Qi, Y.; Xu, J.; Hu, X.; Chen, P. Appl. Surf. Sci. 2005, 250, 188. https://doi.org/10.1016/j.apsusc.2004.12.051
  10. Collazos-Castro, J. E.; Polo, J. L.; Hernandez-Labrado, G. R.; Padial-Canete, V.; Garcia-Rama, C. Biomaterials 2010, 31, 9244. https://doi.org/10.1016/j.biomaterials.2010.08.057
  11. Abidian, M. R.; Kim, D.; Martin, D. Adv. Mater. 2006, 18, 405. https://doi.org/10.1002/adma.200501726
  12. Setti, L.; Fraleoni-Morgera, A.; Ballarin, B.; Filippini, A.; Frascaro, D.; Piana, C. Biosens. Bioelectron. 2005, 20, 2019. https://doi.org/10.1016/j.bios.2004.09.022
  13. Xu, J.; Peng, R.; Ran, K.; Xian, Y.; Tian, Y.; Jin, L. Talanta 2010, 82, 1511. https://doi.org/10.1016/j.talanta.2010.07.033
  14. Yin, K.; Zhu, Z. Synth. Met. 2010, 160, 1115. https://doi.org/10.1016/j.synthmet.2010.01.030
  15. Choi, J.; Lee, J.; Choi, J.; Jung, D.; Shim, S. E. Synth. Met. 2010, 160, 1415. https://doi.org/10.1016/j.synthmet.2010.04.021
  16. Lin, C.; Chen, J.; Hu, C.; Tunney, J. J.; Ho, K. Sens. Actuators B 2009, 140, 402. https://doi.org/10.1016/j.snb.2009.04.041
  17. Memarzadeh, R.; Panahi, F.; Javadpour, S.; Khalafi-Nezhad, A.; Noh, H.-B.; Shim, Y.-B. Bull. Korean Chem. Soc. 2012, 33, 1297. https://doi.org/10.5012/bkcs.2012.33.4.1297
  18. Javadpour, S.; Gharavi, A.; Feizpour, A.; Khanehzar, A.; Panahi, F. Sens. Actuators B 2009, 142, 152. https://doi.org/10.1016/j.snb.2009.07.051
  19. Gangjee, A.; Adair, O. O.; Pagley, M.; Queener, S. F. J. Med. Chem. 2008, 51, 6195. https://doi.org/10.1021/jm800694g
  20. Chan, D. C. M.; Fu, H.; Forsch, R. A.; Queener, S. F.; Rosowsky, A. J. Med. Chem. 2005, 48, 4420. https://doi.org/10.1021/jm0581718
  21. Wamhoff, H.; Dzenis, J.; Hirota, K. Adv. Heterocycl. Chem. 1992, 55, 129. https://doi.org/10.1016/S0065-2725(08)60222-6
  22. Sotzing, G. A.; Briglin, S. M.; Grubbs, R. H.; Lewis, N. S. Anal. Chem. 2000, 72, 3181. https://doi.org/10.1021/ac991079x
  23. Armbruster, D. A.; Pry, T. Clin. Biochem. Rev. 2008, 29, S49.

Cited by

  1. Amino acids and peptides as reactants in multicomponent reactions: modification of peptides with heterocycle backbones through combinatorial chemistry pp.1573-501X, 2019, https://doi.org/10.1007/s11030-018-9861-0
  2. Electrospinning of Ultrafine Conducting Polymer Composite Nanofibers with Diameter Less than 70 nm as High Sensitive Gas Sensor vol.11, pp.9, 2018, https://doi.org/10.3390/ma11091744
  3. DFT study of response mechanism and selectivity of poly(3,4-ethylenedioxythiophene) towards CO2 and SO2 as gas sensor pp.1572-9001, 2019, https://doi.org/10.1007/s11224-018-1272-4
  4. Application of PEDOT:PSS and Its Composites in Electrochemical and Electronic Chemosensors vol.9, pp.4, 2013, https://doi.org/10.3390/chemosensors9040079