DOI QR코드

DOI QR Code

Efficient Ring Opening Reaction of Epoxides with Oxygen Nucleophiles Catalyzed by Quaternary Onium Salt

  • Kim, Jin Won (Department of Chemistry, Yeungnam University) ;
  • Cho, Dae Won (Department of Chemistry, Yeungnam University) ;
  • Park, Gyoosoon (Department of Chemistry, Kookmin University) ;
  • Kim, Sung Hong (Analysis Research Division, Daegu Center, Korea Basic Science Institute) ;
  • Ra, Choon Sup (Department of Chemistry, Yeungnam University)
  • Received : 2013.04.05
  • Accepted : 2013.05.05
  • Published : 2013.08.20

Abstract

Ring opening reactions of epoxides with oxygen nucleophiles catalyzed by a variety of quaternary onium salt, such as ammonium or phosphonium salt were explored. The results showed that tetrabutylphosphonium bromide (TBPB) among salts serves as the most efficient catalyst for this process and that expoxide ring opening reactions with a variety of oxygen nucleophiles including carboxyic acid and phenol, promoted using this salt, lead to generate readily purifiable products in excellent yields.

Keywords

References

  1. Lane, B. S.; Burgess, K. Chem. Rev. 2003, 103, 2457-2474. https://doi.org/10.1021/cr020471z
  2. Joergensen, K. A. Chem. Rev. 1989, 89, 431-458. https://doi.org/10.1021/cr00093a001
  3. Xia, Q.-H.; Ge, H.-Q.; Ye, C.-P.; Liu, Z.-M.; Su, K.-X. Chem. Rev. 2005, 105, 1603-1662. https://doi.org/10.1021/cr0406458
  4. Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974-5976. https://doi.org/10.1021/ja00538a077
  5. Hu, X.; Gao, B.; Chu, Y.; Li, W.; Liu, X.; Lin, L.; Feng, X. Chem. Eur. J. 2012, 18, 3473-3477. https://doi.org/10.1002/chem.201103792
  6. Chen, X.; Wu, H.; Wang, S.; Huang, S. Synth. Commun. 2012, 42, 2440-2452. https://doi.org/10.1080/00397911.2011.559608
  7. Dhakshinamoorthy, A.; Alvaro, M.; Concepcion, P.; Fornes, V.; Garcia, H. Chem. Commun. 2012, 48, 5443-5445. https://doi.org/10.1039/c2cc31385e
  8. Erturk, E.; Tezeren, M. A.; Atalar, T.; Tilki, T. Tetrahedron 2012, 68, 6463-6471. https://doi.org/10.1016/j.tet.2012.05.116
  9. Taylor, S. K. Tetrahedron 2000, 56, 1149-1163. https://doi.org/10.1016/S0040-4020(99)01074-1
  10. Pineschi, M. Eur. J. Org. Chem. 2006, 4979-4988.
  11. Krake, S. H.; Bergmeier, S. C. Tetrahedron 2010, 66, 7337-7360. https://doi.org/10.1016/j.tet.2010.06.064
  12. Smith, J. G. Synthesis 1984, 629-656.
  13. Santi, C.; Santoro, S.; Battistelli, B.; Testaferri, L.; Tiecco, M. Eur. J. Org. Chem. 2008, 5387-5390.
  14. Murthy, S. N.; Madhav, B.; Reddy, V. P.; Rao, K. R.; Nageswar, Y. V. D. Tetrahedron Lett. 2009, 50, 5009-5011. https://doi.org/10.1016/j.tetlet.2009.06.078
  15. Bonollo, S.; Lanari, D.; Vaccaro, L. Eur. J. Org. Chem. 2011, 2587-2598.
  16. Rai, V. K.; Sharma, R.; Kumar, A. Tetrahedron Lett. 2013, 54, 1071-1075. https://doi.org/10.1016/j.tetlet.2012.12.026
  17. Bukowska, A.; Bukowski, W. Org. Process Res. Dev. 2002, 6, 234-237. https://doi.org/10.1021/op010112q
  18. Surendra, K.; Krishnaveni, S.; Nageswar, Y. V. D.; Rao, K. R. J. Org. Chem. 2003, 68, 4994-4995. https://doi.org/10.1021/jo034194n
  19. Pineschi, M.; Bertolini, F.; Haak, R. M.; Crotti, P.; Macchia, F. Chem. Commn. 2005, 1426-1428.
  20. Khalafi-Nezhad, A.; Rad, M. N. S.; Khoshnood, A. Synthesis 2003, 16, 2552-2558.
  21. Darensbourg, D. J.; Holtcamp, M. W. Coord. Chem. Rev. 1996, 153, 155. https://doi.org/10.1016/0010-8545(95)01232-X
  22. Calo, V.; Nacci, A.; Monopoli, A.; Fanizzi, A. Org. Lett. 2002, 4, 2561-2563. https://doi.org/10.1021/ol026189w
  23. Shim, J.-J.; Kim, D.; Ra, C. S. Bull. Korean Chem. Soc. 2006, 27, 744-746. https://doi.org/10.5012/bkcs.2006.27.5.744
  24. Huang, J.-W.; Shi, M. J. Org. Chem. 2003, 68, 6705-6709. https://doi.org/10.1021/jo0348221
  25. Li, F.; Xiao, L.; Xia, C.; Hu, B. Tetrahedron Lett. 2004, 45, 8307-8310. https://doi.org/10.1016/j.tetlet.2004.09.074
  26. Sun, J.; Zhang, S.; Cheng, W.; Ren, J. Tetrahedron Lett. 2008, 49, 3588-3591. https://doi.org/10.1016/j.tetlet.2008.04.022
  27. Shaikh, A. A. G.; Sivaram, S. Chem. Rev. 1996, 96, 951-976. https://doi.org/10.1021/cr950067i
  28. Nicolaou, K. C.; Couladouros, E. A.; Nantermet, P. G.; Renaud, J.; Guy, R. K.; Wrasidlo, W. Angew. Chem., Int. Ed. 1994, 33, 1581-1583. https://doi.org/10.1002/anie.199415811
  29. Clements, J. H. Ind. Eng. Chem. Res. 2003, 42, 663-674. https://doi.org/10.1021/ie020678i
  30. Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365-2387. https://doi.org/10.1021/cr068357u
  31. Parker, R. E.; Isaacs, N. S. Chem. Rev. 1959, 59, 737-799. https://doi.org/10.1021/cr50028a006
  32. Bonini, C.; Righi, G. Synthesis 1994, 225-238.
  33. Paknikar, S. K.; Kirtane, J. G. Tetrahedron 1983, 39, 2323-2367. https://doi.org/10.1016/S0040-4020(01)91961-1
  34. Smith, J. G. Synthesis 1984, 629-656.
  35. Ellestad, G. A.; Whaley, H. A.; Patterson, E. L. J. Am. Chem. Soc. 1966, 88, 4109-4110. https://doi.org/10.1021/ja00969a050
  36. Iranpoor, N.; Tarrian, T.; Movahedi, Z. Synthesis 1996, 1473-1476.
  37. Carron, M.; Sharpless, K. B. J. Org. Chem. 1985, 50,1560-1563. https://doi.org/10.1021/jo00209a048
  38. Jacobsen, E. N.; Kakiuchi, F.; Kensler, R. J.; Larrow, J.; Tokunaga, M. Tetrahedron Lett. 1997, 38, 773-776. https://doi.org/10.1016/S0040-4039(96)02414-8
  39. Apparo, S.; Schmidt, R. R. Synthesis 1987, 896-899.
  40. Bonini, C.; Righi, G. Synthesis 1994, 225-238.
  41. Matsunaga, S.; Das, J.; Roels, J.; Vogl, E. M.; Yamamoto, N.; Iida, T.; Yamaguchi, K.; Shibasaki, M. J. Am. Chem. Soc. 2000, 122, 2252-2260. https://doi.org/10.1021/ja993650f
  42. Chem, J.; Shum, W. Tetrahedron Lett. 1995, 36, 2379-2380. https://doi.org/10.1016/0040-4039(95)00282-H
  43. Sit, W. N.; Ng, S. M.; Kwong, Y.; Lau, C. P. J. Org. Chem. 2005, 70, 8583-8586. https://doi.org/10.1021/jo051077e
  44. Behr, A. Carbon Dioxide Activation by Metal Complexes; VCH: Weinheim, Germany, 1988; pp 91-93.
  45. Yamaguchi, K.; Ebitani, K.; Yoshida, T.; Yoshida, H.; Kaneda, K. J. Am. Chem. Soc. 1999, 121, 4526-4527. https://doi.org/10.1021/ja9902165
  46. Kim, H. S.; Kim, J. J.; Lee, B. G.; Jung, O. S.; Jang, H. G.; Kang, S. O. Angew. Chem. Int. Ed. 2000, 39, 4096-4098. https://doi.org/10.1002/1521-3773(20001117)39:22<4096::AID-ANIE4096>3.0.CO;2-9
  47. Darensbourg, D. J.; Wildeson, J. R.; Yarbrough, J. C.; Reibenspies, J. H. J. Am. Chem. Soc. 2000, 122, 12487-12496. https://doi.org/10.1021/ja002855h
  48. Shibata, I.; Mitani, A.; Imakuni, A.; Baba, Tetrahedron Lett. 2011, 52, 721-723. https://doi.org/10.1016/j.tetlet.2010.12.009
  49. Decortes, A.; Belmonte, M. M.; Benet-Buchholz, J.; Kleij, A. W. Chem. Commun. 2010, 46, 4580-4582. https://doi.org/10.1039/c000493f
  50. Tsutsumi, Y.; Yamakawa, K.; Yoshida, M.; Ema, T.; Sakai, T. Org. Lett. 2010, 12, 5728-5731. https://doi.org/10.1021/ol102539x
  51. Whiteoak, C. J.; Martin, E.; Belmonte, M. M.; Benet-Buchholz, J.; Kleij, A. W. Adv. Synth. Catal. 2012, 354, 469-476. https://doi.org/10.1002/adsc.201100752
  52. Coletti, A.; Whiteoak, C. J.; Conte, V.; Kleij, A. W. Chem. Cat. Chem. 2012, 4, 1190-1196.
  53. Xu, L.-W.; Li. L.; Xia, C.-G.; Zhao, P.-Q. Tetrahedron Lett. 2004, 45, 2435-2438. https://doi.org/10.1016/j.tetlet.2004.01.042
  54. Xiao, L.-F.; Li, F.-W.; Peng, J.-J.; Xia, C.-G. J. Mol. Cat. A: Chem. 2006, 253, 265-269. https://doi.org/10.1016/j.molcata.2006.03.047
  55. Betti, C.; Landini, D.; Maia, A. Synlett. 2006, 1335-1338.
  56. Horvath, A.; Frigyes, D.; Maho, S.; Berente, Z.; Kollar, L.; Skoda-Foldes, R. Synthesis 2009, 4037-4041.
  57. Chen, J.; Wu, H.; Jin, C.; Zhang, X.; Xie, Y.; Su, W. Green Chem. 2006, 8, 330-332. https://doi.org/10.1039/b600620e
  58. Yadav, J. S.; Reddy, B. V. S.; Basak, A. K.; Venkat, N. A. Tetrahedron Lett. 2003, 44, 1047-1050. https://doi.org/10.1016/S0040-4039(02)02735-1
  59. Yadav, J. S.; Reddy, B. V. S.; Jyothirmai, B.; Murty, M. S. R. Tetrahedron Lett. 2005, 46, 6559-6562. https://doi.org/10.1016/j.tetlet.2005.07.074
  60. Ra, C. S.; Hwang, J. C.; Lee, H, B.; Shim, J.-J. Bull. Korean Chem. Soc. 2007, 28, 1060-1062. https://doi.org/10.5012/bkcs.2007.28.6.1060
  61. Liu, F.; He, J.-w.; Lin, Z.-m.; Ling, J.-q.; Jia, D.-m. Molecules 2006, 11, 953. https://doi.org/10.3390/11120953
  62. Dai, Z.; Li, Y.; Yang, S.; Zhao, N.; Zhang, X.; Xu, J. Eur. Polym. J. 2009, 45, 1941. https://doi.org/10.1016/j.eurpolymj.2009.04.012
  63. Xiong, Y.; Liu, H.; Ou, E.; Zeng, X.; Zhou, W.; Xu, W. J. Appl. Polym. Sci. 2010, 118, 827.
  64. Aritomi, M. 1977, Japan Patent 52129735
  65. Hocking, M. B. Can. J. Chem. 1974, 52, 2730-2735. https://doi.org/10.1139/v74-398
  66. Mitsunobu, O.; Kimura, J.; Iiizumi, K.; Yanagida, N. Bull. Chem. Soc. Jpn. 1976, 49, 510-513. https://doi.org/10.1246/bcsj.49.510
  67. Guss, C. O. J. Am. Chem. Soc. 1949, 71, 3460-3462. https://doi.org/10.1021/ja01178a059
  68. Otera, J.; Yoshinaga, Y.; Hirakawa, K.; Nakata, T. Tetrahedron Lett. 1985, 26, 3219-3222. https://doi.org/10.1016/S0040-4039(00)98156-5

Cited by

  1. Organocatalyzed coupling of carbon dioxide with epoxides for the synthesis of cyclic carbonates: catalyst design and mechanistic studies vol.7, pp.13, 2017, https://doi.org/10.1039/C7CY00438A
  2. ChemInform Abstract: Efficient Ring Opening Reaction of Epoxides with Oxygen Nucleophiles Catalyzed by Quaternary Onium Salt. vol.44, pp.50, 2013, https://doi.org/10.1002/chin.201350031
  3. A Modified Synthesis of Oxetan-3-ol vol.56, pp.5, 2013, https://doi.org/10.1134/s107042802005022x
  4. The Effect of Polymeric Inclusions and Nanofillers on Cure Kinetics of Epoxy Resin: A Review vol.63, pp.6, 2021, https://doi.org/10.1134/s0965545x21350145