DOI QR코드

DOI QR Code

Pycnometric and Spectroscopic Studies of Red Phosphors Ca2+(1-1.5x)WO4:Eu3+x and Ca2+(1-2x)WO4:Eu3+x,Na+x

  • Cho, Seon-Woog (Department of Materials Science and Engineering, Silla University)
  • Received : 2013.05.20
  • Accepted : 2013.06.27
  • Published : 2013.09.20

Abstract

Red phosphors $Ca_{(1-1.5x)}Eu_xWO_4$ and $Ca_{(1-2x)}Eu^_xNa_xWO_4$ were synthesized with various concentrations x of $Eu^{3+}$ ions by using a solid-state reaction method. The crystal structure of the red phosphors were found to be a tetragonal scheelite structure with space group $I4_1/a$. X-ray diffraction (XRD) results show the (112) main diffraction peak centered at $2{\theta}=28.71^{\circ}$, and indicate that there is no basic structural deformation caused by the vacancies ${V_{Ca}}^{{\prime}{\prime}}$ or the $Eu^{3+}$ (and $Na^+$) ions in the host crystals. Densities of $Ca_{(1-1.5x)}Eu_xWO_4$ were measured on a (helium) gas pycnometer. Comparative results between the experimental and theoretical densities reveal that $Eu^{3+}$ (and $Na^+$) ions replace the $Ca^{2+}$ ions in the host $CaWO_4$. Also, the photoluminescence (PL) emission and photoluminescence excitation (PLE) spectra show the optical properties of trivalent $Eu^{3+}$ ions, not of divalent $Eu^{2+}$. Raman spectra exhibit that, without showing any difference before and after the doping of activators to the host material $CaWO_4$, all the gerade normal modes occur at the identical frequencies with the same shapes and weaker intensities after the substitution. However, the FT-IR spectra show that some of the ungerade normal modes have shifted positions and different shapes, caused by different masses of $Eu^{3+}$ ions (or $Na^+$ ions, or ${V_{Ca}}^{{\prime}{\prime}}$ vacancies) from $Ca^{2+}$.

Keywords

References

  1. Cho, S.; Cho, S.-W. Kor. J. Mater. Res. 2012, 22, 215. https://doi.org/10.3740/MRSK.2012.22.5.215
  2. Blanchard, F. Powder Diffraction 1989, 4, 220. https://doi.org/10.1017/S0885715600013774
  3. Zalkin A.; Templeton, D. H. J. Chem. Phys. 1964, 40, 501. https://doi.org/10.1063/1.1725143
  4. Kay, M. I.; Frazer, B. C.; Almodovar, I. J. Chem. Phys. 1964, 40, 504. https://doi.org/10.1063/1.1725144
  5. Sleight, A. W. Acta Cryst. 1972, B28, 2899.
  6. Warner, T. E. Synthesis, Properties and Mineralogy of Important Inorganic Materials; John Wiley and Sons: U. K., 2011; pp 228-239.
  7. McCarthy, G. J. Mat. Res. Bull. 1971, 6, 31. https://doi.org/10.1016/0025-5408(71)90156-5
  8. Ghaderi, M.; Palin, J. M.; Campbell, I. H.; Sylvester, P. J. Economic Geology 1999, 94, 423. https://doi.org/10.2113/gsecongeo.94.3.423
  9. Connelly, N. G.; Damhus, T.; Hartshorn, R. M.; Hutton, A. T. Nomenclature of Inorganic Chemistry, IUPAC Recommendations 2005; RSC Publishing: Cambridge, U. K., 2005.
  10. Shannon, R. D. Acta Cryst. 1976, A32, 751.
  11. Shannon, R. D.; Prewitt, C. T. Acta Cryst. 1969, B25, 925.
  12. Kodaira, C. A.; Brito, H. F.; Felinto, M. C. F. C. Journal of Solid State Chemistry 2003, 171, 401. https://doi.org/10.1016/S0022-4596(02)00221-9
  13. Kodaira, C. A.; Brito, H. F.; Malta, O. L.; Serra, O. A. Journal of Luminescence 2003, 101, 11. https://doi.org/10.1016/S0022-2313(02)00384-8
  14. Huang, J.; Xu, J.; Luo, H.; Yu, X.; Li, Y. Inorg. Chem. 2011, 50, 11487. https://doi.org/10.1021/ic2013528
  15. Su, Y.; Li, L.; Li, G. Chem. Mater. 2008, 20, 6060. https://doi.org/10.1021/cm8014435
  16. Shi, S.; Gao, J.; Zhou, J. Optical Materials 2008, 30, 1616. https://doi.org/10.1016/j.optmat.2007.10.007
  17. Cullity, B. D.; Stock, S. R. Elements of X-Ray Diffraction, 3rd ed.; Prentice Hall, U. S. A., 2001; p 339.
  18. Rousseau, D. L.; Bauman, R. P.; Porto, S. P. S. J. Raman Spectrosc. 1981, 10, 253. https://doi.org/10.1002/jrs.1250100152
  19. Gracia, L.; Longo, V. M.; Cavalcante, L. S.; Beltran, A.; Avansi, W.; Li, M. S.; Mastelaro, V. R.; Varela, J. A.; Longo, E.; Andrs, J. J. Appl. Phys. 2011, 110, 043501. https://doi.org/10.1063/1.3615948
  20. Cavalcante, L. S.; Longo, V. M.; Sczancoski, J. C.; Almeida, M. A.; Batista, J. A.; Varela, J. A.; Orlandi, M. O.; Longo, E.; Li, M. S. CrystEngComm 2012, 14, 853. https://doi.org/10.1039/c1ce05977g
  21. Burcham, L. J.; Wachs, I. E. Spectrochimica Acta Part A 1998, 54, 1355. https://doi.org/10.1016/S1386-1425(98)00036-5

Cited by

  1. Effect of Zn2+ ions on the structure, morphology and optical properties of CaWO4 microcrystals vol.72, pp.3, 2014, https://doi.org/10.1007/s10971-014-3550-y
  2. (A = Ca, Sr; □ = vacancy) vol.44, pp.13, 2015, https://doi.org/10.1039/C5DT00022J
  3. Point Defects and Photoluminescence of Green Phosphors Ca(1-1.5x)WO4:Tbx3+ and Ca(1-2x)WO4:Tbx3+, Nax vol.23, pp.9, 2013, https://doi.org/10.3740/mrsk.2013.23.9.537