DOI QR코드

DOI QR Code

Comparative Study on Adsorptive Characteristics of Diazinon in Water by Various Adsorbents

  • Ryoo, Keon Sang (Department of Applied Chemistry, Andong National University) ;
  • Jung, Sun Young (Department of Applied Chemistry, Andong National University) ;
  • Sim, Hun (Department of Applied Chemistry, Andong National University) ;
  • Choi, Jong-Ha (Department of Applied Chemistry, Andong National University)
  • Received : 2013.06.04
  • Accepted : 2013.06.25
  • Published : 2013.09.20

Abstract

The aim of the present study is to explore the possibility of utilizing fly ash and loess, as alternative to activated carbon, for the adsorption of diazinon in water. Batch adsorption experiment was performed to evaluate the influences of various factors like initial concentration, contact time and temperature on the adsorption of diazinon. The adsorption data shows that fly ash is not effective for the adsorption of diazinon. The equilibrium data for both activated carbon and loess were fitted well to the Freundlich isotherm model. The pseudo-second-order kinetic model appeared to be the better-fitting model because it has higher $R^2$ compared to the pseudo-first-order kinetic model. The thermodynamic parameters such as free energy (${\Delta}G$), the enthalpy (${\Delta}H$) and the entropy (${\Delta}S$) were calculated. Contrary to loess, the ${\Delta}G$ values of activated carbon were negative at the studied temperatures. It indicates that the adsorption of diazinon by activated carbon is a favorable and spontaneous process. The positive ${\Delta}H$ values of activated carbon and loess suggest that the diazinon adsorption process is endothermic in nature. In addition, the positive ${\Delta}S$ values show that increased randomness occurs at the solid/solution surface during the adsorption of diazinon.

Keywords

References

  1. Kim, W. K.; Lee, S. K.; Chon, T. S.; Koh, S. C.; Kim, J. S. J. Environ. Toxicol. 2007, 22(4), 305.
  2. Koh, S. C.; Shin, S. W.; Cho, H. D.; Chon, T. S.; Kim, J. S.; Lee, S. K. J. Environ. Toxicol. 2009, 24(4), 321.
  3. Abo-Amer, A. E. J. Microbial. Biotechnol. 2011, 21(1), 71. https://doi.org/10.4014/jmb.1007.07024
  4. Enan, E.; Berberian, I. G.; El-FiKi, S.; El-Masry, M.; Enan, O. H. J. Environ. Sci. Health 1987, B22, 149.
  5. Oh, J. Y.; Kim, M. K.; Son, H. S.; Zoh, K. D. J. KSEE 2008, 30, 1087.
  6. Hamm, J. T.; Hinton, D. E. Aquat. Toxicol. 2000, 48, 403. https://doi.org/10.1016/S0166-445X(99)00065-X
  7. Burkepile, D. E.; Moore, M. T.; Holland, M. M. Bull. Environ. Contam. Toxicol. 2000, 64, 114. https://doi.org/10.1007/s001289910018
  8. Lee, J. J.; Cho, J.; Kim, H. T. Clean Technology 2011, 17(4), 346.
  9. Park, Y. G.; Ahn, J. S. Korean J. Sanitation 2000, 15(2), 27.
  10. Min, Z. W.; Hong, S. M.; Mok, C. K.; Im, G. J. The Korean J. Pesticide Science 2012, 16(1), 11. https://doi.org/10.7585/kjps.2012.16.1.011
  11. Jung, Y. G.; Eom, M. N.; Jeong, I. H.; Son, J. S.; Kim, K. A. The Korean J. Pesticide Science 2012, 16(2), 145. https://doi.org/10.7585/kjps.2012.16.2.145
  12. Karpouzas, D. G.; Singh, B. K. Adv. Microb. Physiol. 2006, 51, 119. https://doi.org/10.1016/S0065-2911(06)51003-3
  13. Herut, B.; Zohary, T.; Robarts, R. D.; Kress, N. Marine Chemistry 1999, 64, 253. https://doi.org/10.1016/S0304-4203(98)00073-5
  14. Zhou, W.; Zhu, K.; Zhan, H.; Jiang, M.; Chen, H. J. Hazardous Materials 2003, B10, 209.
  15. Chen, H.; Zhou, W.; Zhu, K.; Zhan, H.; Jiang, M. Science of the Total Environment 2004, 326, 217. https://doi.org/10.1016/j.scitotenv.2003.12.011
  16. Sarkar, M.; Acharya, P. K. Waste Management 2006, 26, 559. https://doi.org/10.1016/j.wasman.2005.12.016
  17. Nollet, H.; Roles, M.; Lutgen, P.; Meeren P. V.; Verstraete, W. Chemosphere 2003, 53, 655. https://doi.org/10.1016/S0045-6535(03)00517-4
  18. Wang, J.; Wang, Tian.; Burken, J. G.; Chusuei, C. C.; Ban, H.; Ladwig, K.; Huang, C. P. Chemosphere 2008, 72, 381. https://doi.org/10.1016/j.chemosphere.2008.02.045
  19. Freundlich, H. M. F. J. Phys. Chem. 1906, 57, 385.
  20. Langmuir, I. J. Am. Chem. Soc. 1918, 40, 1361. https://doi.org/10.1021/ja02242a004
  21. Lagergren, S. Band 1898, 24, 1.
  22. Ho, Y. S. J. Hazard. Mater. 1998, 136, 681.
  23. Khani, M. H. Environ. Sci. Pollut. Res. 2011, 18, 1593. https://doi.org/10.1007/s11356-011-0518-0

Cited by

  1. Removal of diazinon pesticide from aqueous solutions using MCM-41 type materials: isotherms, kinetics and thermodynamics pp.1735-2630, 2017, https://doi.org/10.1007/s13762-017-1469-x
  2. High selectivity and removal efficiency of lotus root-based activated carbon towards Fe(III) in La(III) solution vol.35, pp.3, 2018, https://doi.org/10.1007/s11814-017-0322-8
  3. Selective adsorption and removal ability of pine needle-based activated carbon towards Al(III) from La(III) pp.1532-2351, 2019, https://doi.org/10.1080/01932691.2018.1464933
  4. Synthesis of a chromium terephthalate metal organic framework and use as nanoporous adsorbent for removal of diazinon organophosphorus insecticide from aqueous media pp.1532-2351, 2019, https://doi.org/10.1080/01932691.2018.1516149