DOI QR코드

DOI QR Code

Comparison of Oct-2-enyl and Oct-4-enyl Staples for Their Formation and α-Helix Stabilizing Effects

  • Pham, Thanh K. (College of Pharmacy, Dongguk University) ;
  • Yoo, Jiyeon (College of Pharmacy, Dongguk University) ;
  • Kim, Young-Woo (College of Pharmacy, Dongguk University)
  • Received : 2013.04.24
  • Accepted : 2013.06.10
  • Published : 2013.09.20

Abstract

The all-hydrocarbon i,i+4 stapling system using an oct-4-enyl crosslink is one of the most widely employed chemical tools to stabilize an ${\alpha}$-helical conformation of a short peptide. This crosslinking system has greatly extended our ability to modulate intracellular protein-macromolecule interactions. The helix-inducing property of the i,i+4 staple has shown to be highly dependent on the length and the stereochemistry of the oct-4-enyl crosslink. Here we show that changing the double bond position within the i,i+4 staple has a considerable impact not only on the formation of the crosslink but also on ${\alpha}$-helix induction. The data further increases the understanding of the structure-activity relationships of this valuable chemical tool.

Keywords

References

  1. Creighton, T. E. Proteins: Structures and Molecular Properties; Freeman and Co.: New York, 1984.
  2. Fairlie, D. P.; West, M. L.; Wong, A. K. Curr. Med. Chem. 1998, 5, 29-62.
  3. Marqusee, S.; Baldwin, R. L. Proc. Natl. Acad. Sci. USA 1987, 84, 8898-8902. https://doi.org/10.1073/pnas.84.24.8898
  4. Ghadiri, M. R.; Choi, C. J. Am. Chem. Soc. 1990, 112, 1630-1632. https://doi.org/10.1021/ja00160a054
  5. Kemp, D. S.; Allen, T. J.; Oslick, S. L. J. Am. Chem. Soc. 1995, 117, 6641-6657. https://doi.org/10.1021/ja00130a001
  6. Osapay, G.; Taylor, J. W. J. Am. Chem. Soc. 1990, 112, 6046-6051. https://doi.org/10.1021/ja00172a021
  7. Jackson, D. Y.; King, D. S.; Chmielewski, J.; Singh, S.; Schultz, P. G. J. Am. Chem. Soc. 1991, 113, 9391-9392. https://doi.org/10.1021/ja00024a067
  8. Kumita, J. R.; Smart, O. S.; Woolley, G. A. Proc. Natl. Acad. Sci. 2000, 97, 3803-3808. https://doi.org/10.1073/pnas.97.8.3803
  9. Cabezas, E.; Satterthwait, A. C. J. Am. Chem. Soc. 1999, 121, 3862-3875. https://doi.org/10.1021/ja983212t
  10. Cantel, S. et al. J. Org. Chem. 2008, 73, 5663-5674. https://doi.org/10.1021/jo800142s
  11. Blackwell, H. E.; Sadowsky, D. J.; Howard, R. J.; Sampson, J. N.; Chao, J. A.; Steinmetz, W. E.; O'Leary, D. J.; Grubbs, R. H. J. Org. Chem. 2001, 66, 5291-5302. https://doi.org/10.1021/jo015533k
  12. Chapman, R. N.; Dimartino, G.; Arora, P. S. J. Am. Chem. Soc. 2004, 126, 12252-12253. https://doi.org/10.1021/ja0466659
  13. Lim, Y.-B.; Moon, K. S.; Lee, M. Angew. Chem. Int. Ed. 2009, 48, 1601-1605. https://doi.org/10.1002/anie.200804665
  14. Schafmeister, C. E.; Po, J.; Verdine, G. L. J. Am. Chem. Soc. 2000, 122, 5891-5892. https://doi.org/10.1021/ja000563a
  15. Kim, Y.-W.; Grossmann, T. N.; Verdine, G. L. Nat. Proc. 2011, 6, 761-771. https://doi.org/10.1038/nprot.2011.324
  16. Kutchukian, P. S.; Yang, J. S.; Verdine, G. L. Shakhnovich, E. I. J. Am. Chem. Soc. 2009, 131, 4622-4627. https://doi.org/10.1021/ja805037p
  17. Kim, Y.-W.; Kutchukian, P. S.; Verdine, G. L. Org. Lett. 2010, 12, 3046-3049. https://doi.org/10.1021/ol1010449
  18. Verdine, G. L.; Walenski, L. D. Clin. Cancer Res. 2007, 13, 7264-7270. https://doi.org/10.1158/1078-0432.CCR-07-2184
  19. Verdine, G. L.; Hilinski, G. J. Methods Enzymol. 2012, 503, 3-33. https://doi.org/10.1016/B978-0-12-396962-0.00001-X
  20. Verdine, G. L.; Hilinski, G. J. Drug Discov. Today 2012, 9, e41-e47.
  21. Walensky, L. D.; Kung, A. L.; Escher, I.; Malia, T. J.; Barbuto, S.; Wright, R. D.; Wagner, G.; Verdine, G. L.; Korsmeyer, S. J. Science 2004, 305, 1466-1470. https://doi.org/10.1126/science.1099191
  22. Danial, N. N; Walensky, L. D.; Zhang, C. Y.; Choi, C. S.; Fisher, J. K.; Molina, A. J. et al. Nat. Med. 2008, 14, 144-153. https://doi.org/10.1038/nm1717
  23. Gavathiotis, E.; Suzuki, M.; Davis, M. L.; Pitter, K.; Bird G. H.; Katz, S. G.; Tu, H.-G.; Cheng, E. H.-Y.; Tjandra, N.; Walensky, L. D. Nature 2008, 455, 1076-1081. https://doi.org/10.1038/nature07396
  24. Moellering, R. E.; Cornejo, M.; Davis, T. N.; Bianco, C. D.; Aster, J. C. et al. Nature 2009, 462, 182-188. https://doi.org/10.1038/nature08543
  25. Zhang, H.; Zhao, Q.; Bhattacharya, S.; Waheed, A. A.; Tong, X.; Hong, A.; Heck, S.; Curreli, F.; Goger, M.; Cowburn, D.; Freed, E. O.; Debnath, A. K. J. Mol. Biol. 2008, 278, 565-580.
  26. Phillips, C.; Roberts, L. R.; Schade, M.; Bazin, R.; Bent, A. et al. J. Am. Chem. Soc. 2011, 113, 9696-9699.
  27. Chapuis, H.; Slaninova, J.; Bednarova, L.; Monincova, L.; Bud sinsky, M.; e ovsky, V. Amino Acids 2012, 43, 2047-2058. https://doi.org/10.1007/s00726-012-1283-1
  28. Kim, Y.-W.; Verdine, G. L. Bioorg. Med. Chem. Lett. 2009, 19, 2533-2536. https://doi.org/10.1016/j.bmcl.2009.03.022
  29. Toniolo, C.; Crisma, M.; Formaggio, F.; Peggion, C. Biopolymers 2001, 60, 396-419. https://doi.org/10.1002/1097-0282(2001)60:6<396::AID-BIP10184>3.0.CO;2-7
  30. Urnes, P.; Doty, P. Adv. Protein Chem. 1961, 16, 401-544.
  31. Biagini, S. C. G.; Gibson, S. E.; Keen, S. P. J. Chem. Soc. Perkin Trans. 1 1998, 2485-2499.
  32. Lin, Y. A.; Chalker, J. M.; Davis, B. G. ChemBioChem. 2009, 10, 959-969. https://doi.org/10.1002/cbic.200900002
  33. Reichwein, J. F.; Versluis, C.; Liskamp, R. M. J. J. Org. Chem. 2000, 65, 6187-6195. https://doi.org/10.1021/jo000759t
  34. Furstner, A.; Langemann, K. Synthesis 1997, 792-803.
  35. Creighton, C. J.; Reitz, A. B. Org. Lett. 2001, 3, 893-895. https://doi.org/10.1021/ol015530u
  36. Stymiest, J. L.; Mitchell, B. F.; Wong, S.; Vederas, J. C. Org. Lett. 2003, 5, 47-49. https://doi.org/10.1021/ol027160v
  37. Chen, Y.-H.; Yang, J. T.; Martinez, H. M. Biochemistry 1972, 11, 4120-4131. https://doi.org/10.1021/bi00772a015
  38. Tyndall, J. D.; Nall, T.; Fairlie, D. P. Chem. Rev. 2005, 105, 973-999. https://doi.org/10.1021/cr040669e

Cited by

  1. An RGD-Containing Peptide Derived from Wild Silkworm Silk Fibroin Promotes Cell Adhesion and Spreading vol.10, pp.11, 2018, https://doi.org/10.3390/polym10111193
  2. All-Hydrocarbon Staples and Their Effect over Peptide Conformation under Different Force Fields vol.58, pp.9, 2013, https://doi.org/10.1021/acs.jcim.8b00404