DOI QR코드

DOI QR Code

Effect of Manganese Vanadate Formed on the Surface of Spinel Lithium Manganese Oxide Cathode on High Temperature Cycle Life Performance

  • Kim, Jun-Il (Energy Materials Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Park, Sun-Min (Energy Materials Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Roh, Kwang Chul (Energy Materials Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Lee, Jae-Won (Department of Energy Engineering, Dankook University)
  • Received : 2013.02.07
  • Accepted : 2013.04.09
  • Published : 2013.09.20

Abstract

Rate capability and cyclability of $LiMn_2O_4$ should be improved in order to use it as a cathode material of lithium-ion batteries for hybrid-electric-vehicles (HEV). To enhance the rate capability and cyclability of $LiMn_2O_4$, it was coated with $MnV_2O_6$ by a sol-gel method. A $V_2O_5$ sol was prepared by a melt-quenching method and the $LiMn_2O_4$ coated with the sol was heat-treated to obtain the $MnV_2O_6$ coating layer. Crystal structure and morphology of the samples were examined by X-ray diffraction, SEM and TEM. The electrochemical performances, including cyclability at $60^{\circ}C$, and rate capability of the bare and the coated $LiMn_2O_4$ were measured and compared. Overall, $MnV_2O_6$ coating on $LiMn_2O_4$ improves the cyclability at high temperature and rate capability at room temperature at the cost of discharge capacity. The improvement in cyclability at high temperature and the enhanced rate capability is believed to come from the reduced contact between the electrode, and electrolyte and higher electric conductivity of the coating layer. However, a dramatic decrease in discharge capacity would make it impractical to increase the coating amount above 3 wt %.

Keywords

References

  1. Guyomard, D.; Tarascon, J. M. J. Power Sources 1995, 54, 92. https://doi.org/10.1016/0378-7753(94)02046-6
  2. Xia, Y.; Yoshio, M. J. Power Sources 1997, 66, 129. https://doi.org/10.1016/S0378-7753(96)02538-4
  3. Song, D.; Ikuta, H.; Uchida, T.; Wakihira, M. Solid State Ionics 1999, 117, 151. https://doi.org/10.1016/S0167-2738(98)00258-6
  4. Gummow, R. J.; Kock, A. de; Thackeray, M. M. Solid State Ionics 1994, 69, 59. https://doi.org/10.1016/0167-2738(94)90450-2
  5. Tu, J.; Zhao, X. B.; Xie, J.; Cao, G. S.; Zhuang, D. G.; Zhu, T. J.; Tu, J. P. J. Alloys Compd. 2007, 432, 313. https://doi.org/10.1016/j.jallcom.2006.06.016
  6. Tu, J.; Bao, X. B.; Cao, G. S.; Zhuang, D. G.; Zhu, T. J.; Tu, J. P. Electrochim. Acta 2006, 51, 6456. https://doi.org/10.1016/j.electacta.2006.04.031
  7. Gnanaraj, J. S.; Pol, V. G.; Gedanken, A.; Aurbach, D. Electrochem. Comm. 2003, 5, 940.
  8. Arumugam, D.; Paruthimal, K. G. J. Electroanal. Chem. 2008, 624, 197.
  9. Ha, H.-W.; Yun, N. J.; Kim, K. Electrochim. Acta, Volume 2007, 52, 3236. https://doi.org/10.1016/j.electacta.2006.09.066
  10. Tu, J.; Zhao, X. B.; Xie, J.; Cao, G. S.; Zhuang, D. G.; Zhu, T. J.; Tu, J. P. J. Alloy Compd., Volume 2007, 432, 313. https://doi.org/10.1016/j.jallcom.2006.06.016
  11. Liu, H.; Cheng, C.; Zongqiuhu, Zhang, K. Mater. Chem. Phys. 2007, 101, 276. https://doi.org/10.1016/j.matchemphys.2006.05.006
  12. Lim, S.; Cho, J. Electrochem. Commun. 2008, 10, 1478. https://doi.org/10.1016/j.elecom.2008.07.028
  13. Walz, K. A.; Johnson, C. S.; Genthe, J.; Stoiber, L. C.; Zeltner, W. A.; Anderson, M. W.; Thackeray, M. M. J. Power Sources 2010, 195, 4943. https://doi.org/10.1016/j.jpowsour.2010.03.007
  14. Lee, D. J.; Lee, K. S.; Myung, S. T.; Yashiro, H.; Sun, Y. K. Journal of Power Sources 2011, 196, 1353. https://doi.org/10.1016/j.jpowsour.2010.09.040
  15. Qing, C.; Bai, Y.; Yang, J.; Zhang, W. Electrochim. Acta 2011, 56, 6612.
  16. Kim, C.-S., et al. Meeting Abstracts. No. 3. The Electrochemical Society, 2010.
  17. Lee, J.-W.; Park, S.-M.; Kim, H.-J. J. Power Sources 2009, 188, 583. https://doi.org/10.1016/j.jpowsour.2008.11.124
  18. Dachuan, Y.; Niankan, X.; Jingyu, Z.; Xiulin, Z. Mater. Res. Bull. 1996, 31, 335. https://doi.org/10.1016/0025-5408(95)00191-3
  19. Kim, S.-S.; Ikuta, H.; Wakihara, M. Solid State Ionics 2001, 139, 57. https://doi.org/10.1016/S0167-2738(00)00816-X
  20. Liu, H., Cheng, C.; Zhongqiuhu; Zhang, K. Mater. Chem. Phys. 2007, 101, 276. https://doi.org/10.1016/j.matchemphys.2006.05.006
  21. Gouda, G. M.; Nagendra, C. L. Sensors Actuators A: Physical 2009, 155, 263. https://doi.org/10.1016/j.sna.2009.08.022
  22. Guan, J.; Liu, M. Solid State Ionics 1998, 110, 21. https://doi.org/10.1016/S0167-2738(98)00096-4
  23. Wu, X. M.; He, Z. Q.; Chen, S.; Ma, M. Y.; Xiao, Z. B.; Liu, J. B. Mater. Lett. 2006, 60, 2497. https://doi.org/10.1016/j.matlet.2006.01.026
  24. Son, S. T.; Kim, H. G. J. Power Sources 2005, 147, 220. https://doi.org/10.1016/j.jpowsour.2004.12.006
  25. Deng, B.; Nakamura, H.; Yoshio, M. J. Power Sources 2005, 141, 116. https://doi.org/10.1016/j.jpowsour.2004.07.005
  26. Amatucci, G. G.; Pereira, N.; Zheng, T.; Tarascon, J. M. J. Electrochem. Soc. 2001, 148, A171. https://doi.org/10.1149/1.1342168

Cited by

  1. -based batteries at elevated temperatures vol.3, pp.8, 2015, https://doi.org/10.1039/C4TA06264G